多种强度煤矸石淋滤液入渗模拟系统及特征参数测定方法技术方案

技术编号:13992957 阅读:89 留言:0更新日期:2016-11-14 01:43
多种强度煤矸石淋滤液入渗模拟系统及特征参数测定方法,模拟系统包括底部构件、连接在底部构件上的一个或多个串联的土柱实验标准构件以及土柱实验标准构件顶部的多种强度煤矸石淋滤液入渗补给模拟装置;模拟系统装土构件为多个标准构件且由计算机自动化控制,并且基于该系统实现特征参数的测定,并给出了测试步骤及计算方法,测定时采用大直径的原状土柱进行室内实验,运用多种强度煤矸石淋滤液入渗补给模拟装置模拟三种水力边界条件,即低强度煤矸石淋滤液全入渗边界条件、中强度煤矸石淋滤液有径流入渗边界条件和高强度煤矸石淋滤液稳定入渗边界条件;本发明专利技术具有实用性强,使用效果好,便于推广使用的特点。

【技术实现步骤摘要】

本专利技术属于矿区环境保护领域,特别涉及多种强度煤矸石淋滤液入渗模拟系统及特征参数测定方法
技术介绍
降水主要是指降雨和降雪,水分以各种形式从大气到达地面,其它形式的降水还包括露、霜、雹等。降水是水文循环的重要环节,也是人类用水的基本来源。降水资料是分析合理洪枯水情、流域旱情的基础,也是水资源的开发利用如防洪、发电、灌溉等的规划设计与管理运用的基础。降水入渗补给地下水的过程是大气水到土壤水到地下水“三水”相互转换关系中最基本的环节之一,降水入渗对地下水的补给量即为降水补给量,它是地下水的主要补给方式,同时,也是区域水均衡计算中的一个重要均衡要素。煤矸石是一种混合物,一般将采煤过程和选煤厂生产过程中排出的碳质岩、泥质岩、砂质岩、粉砂岩和少量石灰石称为煤矸石,它是煤炭开采和加工过程中排放的废弃物。目前我国煤矸石的处理方式主要是露天堆放,积存量已达41亿吨以上,并且每年仍以亿吨以上的速度递增。煤矸石在雨水淋滤作用下形成酸性水,使大量的悬浮物、有机物对周围水环境造成严重污染,是矿区环境污染的主要问题之一。淋滤液中的重金属元素毒性很强、污染严重,对生物和人类健康均会造成危害,进入土壤后可向浅层地下水迁移。煤矸石淋滤液入渗运移过程是一个多种组分和多相渗流的问题。土柱实验被广泛应用于农业、林业、地质、土木和环境等研究领域。应用土柱实验可以在实验室内模拟土壤水分和污染物迁移规律。土柱通常分为原状土柱和扰动土柱两种。原状土柱能够用来测试土体本身的结构及其物理性质;当前土柱实验一般采用扰动土柱,扰动土柱是经过筛分形成,或者按照一定比例混合填装所形成的,其不能用来测试土体本身的结构特性。不管采用哪种土柱进行试验,都存在以下问题:①土柱实验装土构件单节长度大,便捷性差,以至于土柱安装困难,对仪器的清洗造成不便;②监测设备安装繁琐,需要对土柱进行钻孔,破坏其结构性;③监测设备一般为人工观测,使得实验精度低、人为性强。非饱和渗透系数与水动力弥散系数是描述非饱和土壤中水分运移和溶质输送的重要函数关系,是分析降水条件下土坡稳定性、固体废物填埋场、地下污水的迁移和填土工程等问题的重要参数。由于在非饱和土中有基质吸力的存在,确定煤矸石淋滤液入渗条件下的特征参数具有较大的难度。非饱和渗透系数和水动力弥散系数的测定既可在实验室,也可在现场进行。室内实验的优点是可在设定的水力边界条件下测试原状试样和重塑试样的特征参数,同时与原位实测相比,室内实验周期短、经济且更成熟。但通常由于非饱和土的成分、结构以及赋存环境的差异,导致了室内实验所用小试件难以代表真正土体的实际情况。
技术实现思路
为了克服上述现有技术的缺陷,本专利技术的目的在于提供多种强度煤矸石淋滤液入渗模拟系统及特征参数测定方法,基于大直径的原状土柱进行室内实验,采用多种强度煤矸石淋滤液入渗补给模拟装置(C),模拟系统装土构件为多个标准构件且由计算机自动化控制,并且基于该系统实现了特征参数测定,并给出了测试步骤及计算方法,具有实用性强,使用效果好,便于推广使用的特点。为了达到上述目的,本专利技术的技术方案为:多种强度煤矸石淋滤液入渗模拟系统,包括底部构件(1)、连接在底部构件(1)上的一个或多个串联的土柱实验标准构件(4)以及土柱实验标准构件(4)顶部的多种强度煤矸石淋滤液入渗补给模拟装置(C);所述的底部构件(1)包括位于最下方的底座(1-1),底座(1-1)上的集水点通过塑料软管(2)接入出渗量量杯(3),塑料软管(2)上设置有第三流量传感器(3-1),第三流量传感器(3-1)接入计算机(7);底座(1-1)的上方设置有承力柱(1-2),承力柱(1-2)的上部设置有高进气值陶土板(1-3),高进气值陶土板(1-3)的四周边沿均与底部构件(1)管件(1-7)的内壁水平紧贴,高进气值陶土板(1-3)的顶部设置有滤纸(1-4),滤纸(1-4)的上表面与原状土样(12)接触;管件(1-7)的顶端设置有外螺纹连接段(1-6),外螺纹连接段(1-6)通过法兰(6)与土柱实验标准构件(4)连接;所述土柱实验标准构件(4)由两个相同的半圆柱体经卡箍(4-30)通过土柱实验标准构件(4)管壁(4-1)的卡箍凹槽(4-3)处连接成一个圆柱体,土柱实验标准构件(4)的管壁(4-1)上设置有圆形小孔(4-4),圆形小孔(4-4)与橡胶塞(5-7)配合使用;多个土柱实验标准构件(4)通过法兰(6)将上下端的螺纹连接段(4-2)进行连接;插入件(5)通过橡胶塞(5-7)插入原状土样(12)内,插入件(5)内传感器所采集的数据都实时传输给计算机(7);土壤热传导吸力探头(4-7)经圆形小孔(4-4)插入原状土样(12)内,土壤热传导吸力探头(4-7)内传感器所采集的数据都实时传输给计算机(7);X射线荧光光谱探头(4-8)经圆形小孔(4-4)插入原状土样(12)内,X射线荧光光谱探头(4-8)所采集的数据都实时传输给计算机(7);土柱实验标准构件(4)上固定有多个测压管(4-9),多个测压管(4-9)的每个入水口经圆形小孔(4-4)插入原状土样(12)内;所述的插入件(5)在土柱上按照同一列布置,土壤热传导吸力探头(4-7)在土柱上按照同一列布置,X射线荧光光谱探头(4-8)在土柱上按照同一列布置,测压管(4-9)在土柱上按照同一列布置;所述的承力柱(1-2)包括承力柱支座(1-22)以及固定在其上的承力柱主体(1-21),所述承力柱支座(1-22)与底座(1-1)为一体成型,承力柱支座(1-22)在土柱竖向投影按照“一个圆心+以底座(1-1)半径1/2为半径的圆周向五等份”方式布置;承力柱主体(1-21)长度不同使得底座(1-1)呈现坡度;所述的土柱底部构件(1)、土柱实验标准构件(4)及圆柱构件(10)均由耐高温玻璃钢制成;所述的插入件(5)的最前端设置有插入针头(5-6),插入件(5)内部管道的转角处设置有橡胶垫片(5-1),内部管道中设置有弹出件(5-2),弹出件(5-2)包括温湿度传感器探头(4-5),弹出件(5-2)后端与导线(9)进行连接,弹出件(5-2)的尾部套设有轻质弹簧(5-4),轻质弹簧(5-4)的末端设置有探针控制器(5-5),插入件(5)的外侧中段设置有挡板(5-3);所述圆形小孔(4-4)形状大小与橡胶塞(5-7)相一致且结合紧密,排布方式为:纵向上相隔排列且遵循上密下疏原则,横向上绕土柱实验标准构件(4)外圆周长8等分排布;所述的卡箍(4-30)由两半圆环钢圈(4-34)组成并通过一端的铆钉(4-35)铆接,卡箍(4-30)的另一端接头(4-33)通过螺丝杆(4-31)和螺母(4-32)来调节卡箍(4-30)的松紧程度,使标准圆柱构件紧密结合;所述的法兰(6)内侧设有法兰螺纹(6-1),法兰(6)的两端设置有转动把手(6-2);所述的计算机(7)的信号端与微控制器(7-0)的信号端相连,微控制器(7-0)设置有温湿度探测输出端(7-2)、基质吸力探测输出端(7-3)和重金属离子浓度监测值输出端(7-4);温湿度探测输出端(7-2)经导线(9)连接温湿度传感器探头(4-5),基质吸力探测输出端(7-3)经导线(9)连接土壤热传导吸力探头(4-7),重金属离子浓度监测值输出端(7-4本文档来自技高网
...

【技术保护点】
多种强度煤矸石淋滤液入渗模拟系统,其特征在于,包括底部构件(1)、连接在底部构件(1)上的一个或多个串联的土柱实验标准构件(4)以及土柱实验标准构件(4)顶部的多种强度煤矸石淋滤液入渗补给模拟装置(C);所述的底部构件(1)包括位于最下方的底座(1‑1),底座(1‑1)上的集水点通过塑料软管(2)接入出渗量量杯(3),塑料软管(2)上设置有第三流量传感器(3‑1),第三流量传感器(3‑1)接入计算机(7);底座(1‑1)的上方设置有承力柱(1‑2),承力柱(1‑2)的上部设置有高进气值陶土板(1‑3),高进气值陶土板(1‑3)的四周边沿均与底部构件(1)管件(1‑7)的内壁水平紧贴,高进气值陶土板(1‑3)的顶部设置有滤纸(1‑4),滤纸(1‑4)的上表面与原状土样(12)接触;管件(1‑7)的顶端设置有外螺纹连接段(1‑6),外螺纹连接段(1‑6)通过法兰(6)与土柱实验标准构件(4)连接;所述土柱实验标准构件(4)由两个相同的半圆柱体经卡箍(4‑30)通过土柱实验标准构件(4)管壁(4‑1)的卡箍凹槽(4‑3)处连接成一个圆柱体,土柱实验标准构件(4)的管壁(4‑1)上设置有圆形小孔(4‑4),圆形小孔(4‑4)与橡胶塞(5‑7)配合使用;多个土柱实验标准构件(4)通过法兰(6)将上下端的螺纹连接段(4‑2)进行连接;插入件(5)通过橡胶塞(5‑7)插入原状土样(12)内,插入件(5)内传感器所采集的数据都实时传输给计算机(7);土壤热传导吸力探头(4‑7)经圆形小孔(4‑4)插入原状土样(12)内,土壤热传导吸力探头(4‑7)内传感器所采集的数据都实时传输给计算机(7);X射线荧光光谱探头(4‑8)经圆形小孔(4‑4)插入原状土样(12)内,X射线荧光光谱探头(4‑8)所采集的数据都实时传输给计算机(7);土柱实验标准构件(4)上固定有多个测压管(4‑9),多个测压管(4‑9)的每个入水口经圆形小孔(4‑4)插入原状土样(12)内;所述的插入件(5)在土柱上按照同一列布置,土壤热传导吸力探头(4‑7)在土柱上按照同一列布置,X射线荧光光谱探头(4‑8)在土柱上按照同一列布置,测压管(4‑9)在土柱上按照同一列布置;多种强度煤矸石淋滤液入渗补给模拟装置(C)包括低强度煤矸石淋滤液全入渗补给模拟装置(16)、中强度煤矸石淋滤液有径流入渗补给模拟装置(17)和高强度煤矸石淋滤液稳定入渗补给模拟装置(14)。...

【技术特征摘要】
1.多种强度煤矸石淋滤液入渗模拟系统,其特征在于,包括底部构件(1)、连接在底部构件(1)上的一个或多个串联的土柱实验标准构件(4)以及土柱实验标准构件(4)顶部的多种强度煤矸石淋滤液入渗补给模拟装置(C);所述的底部构件(1)包括位于最下方的底座(1-1),底座(1-1)上的集水点通过塑料软管(2)接入出渗量量杯(3),塑料软管(2)上设置有第三流量传感器(3-1),第三流量传感器(3-1)接入计算机(7);底座(1-1)的上方设置有承力柱(1-2),承力柱(1-2)的上部设置有高进气值陶土板(1-3),高进气值陶土板(1-3)的四周边沿均与底部构件(1)管件(1-7)的内壁水平紧贴,高进气值陶土板(1-3)的顶部设置有滤纸(1-4),滤纸(1-4)的上表面与原状土样(12)接触;管件(1-7)的顶端设置有外螺纹连接段(1-6),外螺纹连接段(1-6)通过法兰(6)与土柱实验标准构件(4)连接;所述土柱实验标准构件(4)由两个相同的半圆柱体经卡箍(4-30)通过土柱实验标准构件(4)管壁(4-1)的卡箍凹槽(4-3)处连接成一个圆柱体,土柱实验标准构件(4)的管壁(4-1)上设置有圆形小孔(4-4),圆形小孔(4-4)与橡胶塞(5-7)配合使用;多个土柱实验标准构件(4)通过法兰(6)将上下端的螺纹连接段(4-2)进行连接;插入件(5)通过橡胶塞(5-7)插入原状土样(12)内,插入件(5)内传感器所采集的数据都实时传输给计算机(7);土壤热传导吸力探头(4-7)经圆形小孔(4-4)插入原状土样(12)内,土壤热传导吸力探头(4-7)内传感器所采集的数据都实时传输给计算机(7);X射线荧光光谱探头(4-8)经圆形小孔(4-4)插入原状土样(12)内,X射线荧光光谱探头(4-8)所采集的数据都实时传输给计算机(7);土柱实验标准构件(4)上固定有多个测压管(4-9),多个测压管(4-9)的每个入水口经圆形小孔(4-4)插入原状土样(12)内;所述的插入件(5)在土柱上按照同一列布置,土壤热传导吸力探头(4-7)在土柱上按照同一列布置,X射线荧光光谱探头(4-8)在土柱上按照同一列布置,测压管(4-9)在土柱上按照同一列布置;多种强度煤矸石淋滤液入渗补给模拟装置(C)包括低强度煤矸石淋滤液全入渗补给模拟装置(16)、中强度煤矸石淋滤液有径流入渗补给模拟装置(17)和高强度煤矸石淋滤液稳定入渗补给模拟装置(14)。2.根据权利要求1所述的多种强度煤矸石淋滤液入渗模拟系统,其特征在于,所述的承力柱(1-2)包括承力柱支座(1-22)以及固定在其上的承力柱主体(1-21),所述承力柱支座(1-22)与底座(1-1)为一体成型,承力柱支座(1-22)在土柱竖向投影按照“一个圆心+以底座(1-1)半径1/2为半径的圆周向五等份”方式布置;承力柱主体(1-21)长度不同使得底座(1-1)呈现坡度;所述的土柱底部构件(1)、土柱实验标准构件(4)及圆柱构件(10)均由耐高温玻璃钢制成。3.根据权利要求1所述的多种强度煤矸石淋滤液入渗模拟系统,其特征在于,所述的插入件(5)的最前端设置有插入针头(5-6),插入件(5)内部管道的转角处设置有橡胶垫片(5-1),内部管道中设置有弹出件(5-2),弹出件(5-2)包括温湿度传感器探头(4-5),弹出件(5-2)后端与导线(9)进行连接,弹出件(5-2)的尾部套设有轻质弹簧(5-4),轻质弹簧(5-4)的末端设置有探针控制器(5-5),插入件(5)的外侧中段设置有挡板(5-3)。4.根据权利要求1所述的多种强度煤矸石淋滤液入渗模拟系统,其特征在于,所述圆形小孔(4-4)形状大小与橡胶塞(5-7)相一致且结合紧密,排布方式为:纵向上相隔排列且遵循上密下疏原则,横向上绕土柱实验标准构件(4)外圆周长8等分排布。5.根据权利要求1所述的多种强度煤矸石淋滤液入渗模拟系统,其特征在于,所述的卡箍(4-30)由两半圆环钢圈(4-34)组成并通过一端的铆钉(4-35)铆接,卡箍(4-30)的另一端接头(4-33)通过螺丝杆(4-31)和螺母(4-32)来调节卡箍(4-30)的松紧程度,使标准圆柱构件紧密结合;所述的法兰(6)内侧设有法兰螺纹(6-1),法兰(6)的两端设置有转动把手(6-2)。6.根据权利要求1所述的多种强度煤矸石淋滤液入渗模拟系统,其特征在于,所述的计算机(7)的信号端与微控制器(7-0)的信号端相连,微控制器(7-0)设置有温湿度探测输出端(7-2)、基质吸力探测输出端(7-3)和重金属离子浓度监测值输出端(7-4);温湿度探测输出端(7-2)经导线(9)连接温湿度传感器探头(4-5),基质吸力探测输出端(7-3)经导线(9)连接土壤热传导吸力探头(4-7),重金属离子浓度监测值输出端(7-4)经导线(9)连接X射线荧光光谱探头(4-8)。7.根据权利要求1所述的多种强度煤矸石淋滤液入渗模拟系统,其特征在于,所述的低强度煤矸石淋滤液全入渗补给模拟装置(16)包括外侧刻有刻度的煤矸石淋滤液桶(16-1),煤矸石淋滤液桶(16-1)的下方通过输液管(16-12)与煤矸石淋滤液喷头(16-9)连通,煤矸石淋滤液喷头(16-9)设置于土柱实验标准构件(4)上部的圆柱构件(10)顶部,圆柱构件(10)内高出原状土样(12)上表面2-5厘米处设置有抗水压冲击板(A),抗水压冲击板(A)上设置有筛孔;U型水头控制管(10-2)内的液面上设置有轻质塑料片(16-8),所述轻质塑料片(16-8)形式为薄圆片,所述轻质塑料片(16-8)上方的圆形凹槽内设置有永久磁铁(16-7),永久磁铁(16-7)的正上方设置有拉线(16-3)吊挂的电线圈(16-6),电线圈(16-6)外接有导线(9),拉线(16-3)的上端缠于转轮(16-2)上,转轮(16-2)上设置有把手(16-4),转轮(16-2)上端用拉线(16-3)通过着力构件(16-11)的小孔与止水阀(16-5)下部相连接,止水阀(16-5)下端设置有轻质弹簧(16-10),所述圆柱构件(10)与U型水头控制管(10-2)相连接,轻质塑料片(16-8)、永久磁铁(16-7)和电线圈(16-6)都在U型水头控制管(10-2)的滑槽(16-13)内运动;所述滑槽(16-13)嵌于U型水头控制管(10-2)内壁,所述电线圈(16-6)按照边沿处三等分设置有滑轨(16-14),所述滑轨(16-14)可在滑槽(16-13)内自由上下运动;所述的低强度煤矸石淋滤液全入渗补给模拟装置(16)控制原状土样(12)表面液体的液面高度低于1mm;所述的中强度煤矸石淋滤液有径流入渗补给模拟装置(17)包括设置在圆柱构件(10)内的煤矸石淋滤液容器(17-9)和设置在煤矸石淋滤液容器(17-9)底部的圆形小孔(17-10),圆柱构件(10)内高出原状土样(12)上表面2-5厘米处设置有抗水压冲击板(A),抗水压冲击板(A)上设置有筛孔;所述煤矸石淋滤液容器(17-9)的顶部设置有压力控制管(17-8)和与外部煤矸石淋滤液连接的进液管(17-7);所述进液管(17-7)上设置有进液电磁阀(17-2)、进液泵(17-1)和用于对煤矸石淋滤液的量进行实时监测的第一流量传感器(17-3);所述煤矸石淋滤液容器内压力控制管(17-8)上设置有压力控制电磁阀(17-5)和压力传感器(17-6),所述煤矸石淋滤液容器内压力控制管(17-8)的尾部连接有空气压缩机(17-4);所述煤矸石淋滤液容器(17-9)的顶部内壁上设置有用于对煤矸石淋滤液容器(17-9)内液体的液面高度进行实时监测的水位传感器(17-11);所述圆柱构件(10)内的原状土样(12)上表面外侧开有出液口(10-1),出液口(10-1)通过塑料软管(2)接入径流量量杯(13),所述塑料软管(2)上设置有第二流量传感器(13-1),所述第二流量传感器(13-1)通过导线(9)接入计算机(7);所述的高强度煤矸石淋滤液稳定入渗补给模拟装置(14)包括外侧刻有刻度的煤矸石淋滤液桶(14-1),煤矸石淋滤液桶(14-1)的下方通过输液管(14-12)与煤矸石淋滤液喷头(14-9)连通,煤矸石淋滤液喷头(14-9)设置于土柱实验标准构件(4)上部的圆柱构件(10)顶部,圆柱构件(10)内高出原状土样(12)上表面2-5厘米处设置有抗水压冲击板(A),抗水压冲击板(A)上设置有筛孔;U型水头控制管(10-2)内的液面上设置有轻质塑料片(14-8),所述轻质塑料片(14-8)形式为薄圆片,所述轻质塑料片(14-8)上方的圆形凹槽内设置有永久磁铁(14-7),永久磁铁(14-7)的正上方设置有拉线(14-3)吊挂的电线圈(14-6),电线圈(14-6)外接有导线(9),拉线(14-3)的上端缠于转轮(14-2)上,转轮(14-2)上设置有把手(14-4),转轮(14-2)上端用拉线(14-3)通过着力构件(14-11)的小孔与止水阀(14-5)下部相连接,止水阀(14-5)下端设置有轻质弹簧(14-10),所述圆柱构件(10)与U型水头控制管(10-2)相连接,轻质塑料片(14-8)、永久磁铁(14-7)和电线圈(14-6)都在U型水头控制管(10-2)的滑槽(14-13)内运动;所述滑槽(14-13)嵌于U型水头控制管(10-2)内壁,所述电线圈(14-6)按照边沿处三等分设置有滑轨(14-14),所述滑轨(14-14)可在滑槽(14-13)内自由上下运动,所述的高强度煤矸石淋滤液稳定入渗补给模拟装置(14)控制原状土样(12)表面液体的液面高度高于1cm以上。8.基于上述任一权利要求所述的多种强度煤矸石淋滤液入渗模拟系统的特征参数测定方法,其特征在于,包括以下步骤:步骤一、组装土柱实验标准构件分别对土柱实验标准构件(4)的两块半圆柱体管壁(4-1)进行拼接,对土柱实验标准构件(4)的接缝进行密封及防水处理,然后把卡箍(4-30)套在卡箍凹槽(4-3)上,并通过扳手上紧套在螺丝杆件(4-31)上的螺母(4-32),使卡箍(4-30)牢固地套在卡箍凹槽(4-3)上,然后将多个土柱实验标准构件(4)通过法兰(6)串联实现纵向拼接;步骤二、安装原状土样选取预先准备好的原状土样(12),将原状土样(12)竖立在地面上,将已经连接好的多个土柱实验标准构件(4)套住原状土样(12),将原状土样(12)与土柱实验标准构件(4)之间的缝隙密封及防水处理保证后续实验时煤矸石淋滤液不从缝隙直接流下;步骤三、组装土柱实验仪器设备先将底座(1-1)放置于水平地面上,然后将承力柱主体(1-21)套放在对应的承力柱支座(1-22)上,将高进气值陶土板(1-3)水平放置于承力柱主体(1-21)上方,所述高进气值陶土板(1-3)上表面铺设有滤纸(1-4),所述承力柱主体(1-21)、高进气值陶土板(1-3)、滤纸(1-4)均位于管件(1-7)内部;在集水处最低位置设置一个出液孔外接塑料软管(2),将所述塑料软管(2)的另一端接入出渗量量杯(3),其中所述塑料软管(2)上安装第三流量传感器(3-1),所述第三流量传感器(3-1)通过导线(9)接入计算机(7),然后将法兰(6)的法兰螺纹(6-1)对准外螺纹连接段(1-6),通过转动把手(6-2)将法兰(6)紧密地安装在底部构件(1)上方,然后将拼接组装而成的土柱实验标准构件连同其套住的原状土样(12)通过土柱实验标准构件(4)的底部螺纹连接段(4-2)与所述底部构件(1)上端的法兰(6)的法兰螺纹(6-1)进行组装,使拼接组装而成的土柱实验标准构件连同其套住的原状土样(12)位于底部构件(1)滤纸(1-4)的正上方,最后通过法兰(6)将圆柱构件(10)进行连接;步骤四、测定原状土样的初始状态原状土样(12)的初始含水率:多个温湿度传感器探头(4-5)分别对原状土样(12)的湿度进行一次监测,并将监测到的信号传给微控制器(7-0),微控制器(7-0)将监测信号通过串口通信电路实时传输给计算机(7),计算机(7)接收并记录多个测试点处原状土样(12)的湿度信号,并将各个测试点处原状土样(12)的湿度信号记录为各个测试点处原状土样(12)的初始含水率θc;原状土样(12)的基质吸力:多个土壤热传导吸力探头(4-7)分别对原状土样(12)的基质吸力进行一次监测,并将监测到的信号传给微控制器(7-0),微控制器(7-0)将监测信号通过串口通信电路实时传输给计算机(7),计算机(7)接收并记录多个测试点处原状土样(12)的基质吸力信号,并将各个测试点处原状土样(12)的基质吸力信号记录为各个测试点处原状土样(12)的初始基质吸力Fac;原状土样(12)的重金属离子浓度本底值:多个X射线荧光光谱探头(4-8)分别对初始状态的原状土样(12)重金属离子浓度进行监测,将监测到的重金属离子浓度信号传给微控制器(7-0),微控制器(7-0)将监测信号通过串口通信电路实时传输给计算机(7),计算机(7)接收并记录多个测试点处原状土样(12)的重金属离子浓度信号,并将各个测试点处原状土样(12)的重金属离子浓度信号记录为各个测试点重金属离子浓度本底值c;原状土样(12)的水头高度:多个测压管(4-9)分别对原状土样(12)的水头高度进行监测得到各个测试点初始阶段对应的水头高度hc;原状土样(12)的饱和含水率:将原状土样(12)的取样地点带回的其它土样进行饱和含水率测定,作为原状土样(12)的饱和含水率;取土样放入称量盒内,为其注水直至水面浸没土样,浸没10分钟之后将多余的水清除,称质量为m,之后将土样和称量盒放入烘箱内,进行烘干,之后将其置于天平上进行称重得质量为ms,之后利用公式计算求得原状土样(12)的饱和含水率θsat;步骤五、模拟三种强度水力边界条件根据测试要求,将煤矸石淋滤液入渗补给模拟装置(C)配合土柱实验标准构件(4)工作,模拟三种水力边界条件,即低强度煤矸石淋滤液全入渗边界条件、中强度煤矸石淋滤液有径流入渗边界条件和高强度煤矸石淋滤液稳定入渗边界条件;步骤六、模拟过程中的各参数监测多个温湿度传感器探头(4-5)分别对模拟过程中的原状土样(12)的湿度进行监测,并将监测到的信号传给微控制器(7-0),微控制器(7-0)将监测信号通过串口通信电路实时传输给计算机(7),计算机(7)接收并记录多个测试点处原状土样(12)的湿度信号,并将各个测试点处原状土样(12)的湿度信号记录为各个测试点记录时刻对应的含水率θi;多个土壤热传导吸力探头(4-7)分别对模拟过程中的原状土样(12)的基质吸力进行监测,将监测到的基质吸力信号传给微控制器(7-0),微控制器(7-0)将监测信号通过串口通信电路实时传输给计算机(7),计算机(7)接收并记录多个测试点处原状土样(12)的基质吸力信号,并将各个测试点处原状土样(12)的基质吸力信号记录为各个测试点记录时刻对应的基质吸力Fa;多个X射线荧光光谱探头(4-8)分别对模拟过程中的原状土样(12)的重金属离子浓度进行监测,将监测到的重金属离子浓度信号传给微控制器(7-0),微控制器(7-0)将监测信号通过串口通信电路实时传输给计算机(7),计算机(7)接收并记录多个测试点处原状土样(12)的重金属离子浓度信号,并将各个测试点处原状土样(12)的重金属离子浓度信号记录为各个测试点记录时刻对应的重金属离子浓度ci;多个测压管(4-9)分别对原状土样(12)的水头高度进行监测得到各个测试点记录时刻对应的水头高度hi;上述所有的监测,其监测时间频率设置如下:煤矸石淋滤液入渗5分钟内,记录时间间隔为5秒,煤矸石淋滤液入渗5-15分钟内,记录时间间隔为10秒,煤矸石淋滤液入渗15-30分钟内,记录时间间隔为15秒,煤矸石淋滤液入渗30-60分钟内,记录时间间隔为20秒,煤矸石淋滤液入渗60分钟以后记录时间间隔为60秒,直到实验达到稳定后2-4小时以上;步骤七、模拟过程中监测结果分析对所记录的某一时刻的基质吸力Fa和重金属离子浓度ci监测数据做插值处理,得到某一时刻原状土样(12)所对应的基质吸力云图和重金属离子浓度云图;同时对所记录的某一时刻原状土样(12)所对应的含水率θi监测数据做插值处理,得到某一时刻原状土样(12)对应的含水率云图;依据含水率云图的变化规律,找出每个时刻所对应的湿润前锋的位置,所述湿润前锋的位置指的是湿润带的边缘,与下部未湿润带之间含水率存在明显突变的部分,各位置连线形成湿润前锋线,从而观察湿润前锋位置随时间t的变化规律;根据含水率云图,依据含水率的大小,找出每个时刻所对应的饱和含水率θsat的等值线,从而确定完全饱和带,所述完全饱和带定义是土柱上表面以下一定深度内出现水分完全饱和的部分;当湿润前锋与完全饱和带在同一监测时刻出现时,所述湿润前锋线与饱和含水率θsat等值线之间的区域被定义为煤矸石淋滤液入渗过渡带;绘制基质吸力Fa和含水率θi的关系图,从而分别得到各土层的土-水特征曲线;步骤八、煤矸石淋滤液入渗系数计算根据公式Qr=Qz-Qj,计算得到煤矸石淋滤液入渗量Qr,单位为cm3;其中Qz为煤矸石淋滤液总降入量,单位为cm3;Qj为煤矸石淋滤液径流量,单位为cm3;根据公式△S=Qr-Qc,计算得到煤矸石淋滤液入渗的亏损量△S,单位为cm3;其中Qr为煤矸石淋滤液入渗量,单位为cm3;Qc为煤矸石淋滤液出渗量,单位为cm3;根据公式Vr=Qr/t计算得到煤矸石淋滤液入渗率Vr,单位为cm3/s;其中Qr为煤矸石淋滤液入渗量,单位为cm3;t为实验测试时间,单位为s;根据公式Vc=Qc/t计算得到煤矸石淋滤液出渗率Vc,单位为cm3/s;其中Qc为煤矸石淋滤液出渗量,单位为cm3;t为实验测试时间,单位为s;根据公式α=Qc/Qz计算得到煤矸石淋滤液入渗系数α,单位为无量纲;其中Qc为煤矸石淋滤液出渗量,单位为cm3;Qz为煤矸石淋滤液总降入量;步骤九、非饱和渗透系数计算基于土柱实验的煤矸石淋滤液入渗,可以概化为一维垂向入渗,其数学模型如下 ( v y + dv y d y d y ) d x d z - v y d x d z = ∂ θ ∂ t d x d y d z - - - ( 1 ) ]]>将Darcy定律代入以上方程(1)得 d ( - k d h / d y ) d y = ∂ θ ∂ t - - - ( 2 ) ]]>对于非饱和土,渗透系数k与含水率存在函数关系,所以方程(2)可化为下式 k d 2 h dy 2 + d k d y d h d y = ∂ θ ∂ t - - - ( 3 ) ]]>根据Fredlund&Morgenstern所提出的理论,试样所受的法向应力(σ-ua)和基质吸力值的变化将会引起体积含水率θw的变化,即 dθ w = - m 1 w d ( σ - u a ) - m 2 w ( u a - u w ) - - - ( 4 ) ]]>式中:σ——总应力;m1w——与法向应力(σ-ua)变化有关的水的体积变化系数;——与基质吸力(ua-uw)变化有关的水的体积变化系数;将方程(4)对时间微分,同时,在非稳定渗流过程中土体单元上并没有外荷载作用,假定在非饱和区气相连续不变,得 ∂ θ w ∂ t = γ w m 2 w ∂ h ∂ t - - - ( 5 ) ]]>其中:即土-水特征曲线的斜率。由(3)、(5)式可得 k ...

【专利技术属性】
技术研发人员:王双明王生全毛正君
申请(专利权)人:西安科技大学
类型:发明
国别省市:陕西;61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1