一种高稳定性PTC热敏组件制造技术

技术编号:13570900 阅读:211 留言:0更新日期:2016-08-21 22:50
本发明专利技术涉及一种低电阻,高稳定性PTC热敏元件,其中包含具有电阻正温度效应的组件和导电金属引脚。其中正温度效应的组件其结构是由含上电极箔、下电极箔及一叠夹在上下电极箔间的具有电阻正温度系数效应的材料层所构成的PTC芯材、包覆在芯材四周的绝缘材料框、覆在绝缘材料框和PTC电极箔两表面的绝缘半固化树脂材料,以及覆盖在半固化树脂材料最外表面端电极箔,并且最外表面端电极箔通过盲孔与PTC芯材表面的电极箔连接;导电金属引脚连接在最外表面端的电极箔。本发明专利技术的高稳定性的PTC热敏元件具有低电阻特性,高稳定性,可以满足电池复杂的充放应用。

【技术实现步骤摘要】

本专利技术涉及一种高稳定性PTC热敏元件,其具有低电阻特性,高稳定性的特点,可以满足各种极端环境的应用后维持低电阻,增长了PTC的使用寿命。
技术介绍
具有电阻正温度系数的导电复合材料在正常温度下可维持极低的电阻值,且具有对温度变化反应敏锐的特性,即当电路中发生过电流或过高温现象时,其电阻会瞬间增加到一高阻值,使电路处于断路状态,以达到保护电路元件的目的。因此可把具有电阻正温度系数的导电复合材料连接到电路中,作为电流传感元件的材料。此类材料已被广泛应用于电子线路保护元器件上。图1所示的现有电阻正温度效应的芯材常用结构,由具有正温度系数效应的芯片11的上、下表面的电极箔12上而组成。图2显示的是现有的过流保护的PTC热敏组件,其是将两金属引脚13一端分别焊接在具有正温度系数效应的芯片11的上、下表面的电极箔12上而组成。金属引脚用来连接需保护的电气产品。图2所示的结构PTC热敏组件具有导热快,保护反应迅速及时的特点。随着智能手机的普及,手机电芯容量也越来越大,手机APP软件应用对放电电流多样性,对过流保护PTC热敏元件要求也越来越高,期望其降低初始电阻,同时能够适应各种脉冲电流,即在脉冲电流下PTC仍具有较高的稳定性,不发生误动作。同时,随着手机内置处理的高端化,内置硬件发热也远高于功能手机,因而PTC在手机端经历复杂的温度冲击下发生升阻而产生误动作保护。故智能手机电池应用急需高稳定性的PTC热敏组件,提高客户的体验感。
技术实现思路
本专利技术所要解决的技术问题在于提供一种高稳定性PTC的热敏组件,其具有初始电阻低的特性的同时,在多次温度冲击或电流冲击下,仍能够保持低电阻特性,满足电池的正常充放电需要。本专利技术解决上述技术问题所采取的技术方案是高稳定性PTC热敏组件,其特征在于:包含:(a)具有电阻正温度效应的芯材,芯材由上电极箔、下电极箔及紧密夹固在上下电极箔间的具有电阻正温度效应的材料层;其中:电阻正温度效应复合材料层包含至少一种结晶性高分子材料和至少一种分散于该结晶性高分子材料的导电填料,导电填料的体积电阻率低于200μΩ.cm,热导率大于10W/(m.K),粒径大小介于0.1μm至30μm,且D50不大于20μm;电极箔基材为金属或金属合金,其体积电阻率低于10μΩ.cm,热导率不低于100W/(m.K);(b)绝缘材料框:其框内尺寸与厚度同PTC芯材尺寸相近,在框厚、框内长、宽均较PTC芯材对应尺寸均不大于2mm;(c)绝缘半固化树脂材料:具有固化粘结性能,固化后能与绝缘树脂框和电极箔粘结;(d)电极箔:基材为金属或金属合金,其体积电阻率低于10μΩ.cm,热导率不低于100W/(m.K);(e)盲孔:孔内采用导电金属填满,连接最外表面端电极箔通过盲孔与PTC芯材表面的电极箔,导电金属体积电阻率低于10μΩ.cm,热导率不低于100W/(m.K);在上述方案的基础上的PTC热敏组件,其特征在于:所述的PTC热敏组件总厚度介于0.2~5.0mm 之间。在上述方案的基础上的PTC热敏组件,其特征在于:所述的具有电阻正温度效应的芯片的面积介于2~500mm2之间。在上述方案的基础上的PTC热敏组件,其特征在于:所述的绝缘树脂框的厚度介于0.15~4.8mm,绝缘树脂框外圈面积介于2.1~600 mm2之间,绝缘树脂框内圈面积介于2~500mm2之间。在上述方案的基础上的PTC热敏组件,其特征在于:所述的半固化绝缘材料的厚度介于10~1000um,面积至少可以全覆盖绝缘树脂框内圈面积。在上述方案的基础上的PTC热敏组件,其特征在于:所述的电极箔的基材为金、银、铜、锌、镍及其合金,且可在金属电极箔表面镀有其他金属层,其金属层可以为镍、锡、锌、钨、银、金、铂及它们的合金,镀层的厚度在1.0um~100um;,较优选择1.0~50.0um;最优选择1.0~25.0um;在上述方案的基础上的PTC热敏组件,其特征在于:所述的盲孔导电孔的数量至少为1个,盲孔的总面积≥0.002mm2;本专利技术一方面利用超低电阻率、高导热率的导电填料和电极来降低PTC热敏组件的初始电阻同时提高散热能力来提使得PTC具有较大维持电流;另一方面将PTC热敏组件六面包覆在固化的绝缘树脂材料内,绝缘材料的隔绝作用,避免PTC热敏受到空气、湿气的影响同时利用绝缘材料的高熔点或不熔特性在PTC 芯材发生保护时限制PTC芯材内聚合物的膨胀,从而使得PTC热敏元件具有高稳定特性。在恶劣环境老化测试中仍具有较低的电阻,可满足智能手机终端的复杂应用条件而不会发生误保护现象。此外,本专利技术的高稳定PTC热敏元件不仅可以通过点焊加工,还可以通过回流焊加工,加工方式更多元化。附图说明图1为现有的常规的PTC热敏组件的结构示意图。图2为现有的常规的PTC热敏元件的结构示意图。图3为高稳定性PTC热敏组件结构示意图。图4为高稳定性PTC热敏组件内部结构示意图。图5为本专利技术的可点焊加工的PTC热敏元件的结构示意图。1-具有电阻正温度效应的材料层2-电极箔3-金属引脚4—绝缘框5—绝缘树脂层6—盲孔。具体实施方式以下通过具体的实施例对本专利技术作进一步的详细说明。以下通过具体的实施例对本专利技术作进一步的详细说明。对比例制备PTC热敏元件的导电复合材料PTC的组成为:(a)聚合物体积分数为42%,熔融温度为135℃和密度为0.952g/cm3的高密度聚乙烯;(b)导电填料为导电炭黑,体积分数为58%,其粒径小于44μm,热导率为129W/(m.K),体积电阻率800~1300μΩ.cm;(c)电极箔基材为纯镍,热导率为88W/(m.K),电阻率为6.84μΩ·cm;(d)引脚为纯镍导电金属引脚,镍的热导率为88W/(m.K),电阻率为6.84μΩ·cm;将转矩流变仪温度设定在180℃,转速为30转/分钟,先加入聚合物和氧化镁密炼1分钟后,加入导电填料,然后继续密炼20分钟,得到导电复合材料,将熔融混合好的导电复合材料通过开炼机薄通拉片,得到厚度为0.20~0.25mm的导电复合材料1。PTC热敏元件的制备过程如下:请参阅图1(本专利技术的具有电阻正温度效应复合材料芯片的示意图),将导电复合材料11置于上下对称的两纯镍金属箔片21,22之间,纯镍金属箔片21,22具有至少一粗糙表面,且所述粗糙表面与导电复合材料1直接接触。再通过热压合的方法将导电复合材料1和金属箔片21,22紧密结合在一起,热压合的温度为180℃,先预热5分钟,然后以5MPa的压力微压3分钟,再以12MPa的压力热压10分钟,然后在冷压机上冷压8分钟,以模具将其冲切成3.0×4.0mm的单个元片,为所述的具有电阻正温度效应复合材料芯片,即PTC芯片0。最后通过回流焊的方法将两个纯镍金属引脚31,32连接在两个纯镍金属箔片21,22表面,形成PTC热敏元件。实施例一制备导电复合材料及PTC热敏元件的步骤与对比例相同,但导电填料由石墨替换为碳化钛固熔体,其粒径小于10μm,体积电阻率42μΩ.cm,热导率为18W/(m.K)。实施例二制备导电复合材料及PTC热敏元件的步骤与实施例2相同,但在实施例一的基础上将纯镍电极箔更换为纯铜电极箔、电阻率1.7μΩ.cm,热导率为380 W/(m.K);本文档来自技高网...

【技术保护点】
一种高稳定性PTC热敏组件,其特征在于:包含:(a)具有电阻正温度效应的芯材,芯材由上电极箔、下电极箔及紧密夹固在上下电极箔间的具有电阻正温度效应的材料层;其中:电阻正温度效应复合材料层包含至少一种结晶性高分子材料和至少一种分散于该结晶性高分子材料的导电填料,导电填料的体积电阻率低于200μΩ.cm,热导率大于10W/(m.K),粒径大小介于0.1μm至30μm,且D50不大于20μm;电极箔基材为金属或金属合金,其体积电阻率低于10μΩ.cm,热导率不低于100W/(m.K);(b)绝缘材料框:其框内尺寸与厚度同PTC芯材尺寸相近,在框厚、框内长、宽均较PTC芯材对应尺寸均不大于2mm;(c)绝缘半固化树脂材料:具有固化粘结性能,固化后能与绝缘树脂框和电极箔粘结;(d)电极箔:基材为金属或金属合金,其体积电阻率低于10μΩ.cm,热导率不低于100W/(m.K);(e)盲孔:孔内采用导电金属填满,连接最外表面端电极箔通过盲孔与PTC芯材表面的电极箔,导电金属体积电阻率低于10μΩ.cm,热导率不低于100W/(m.K)。

【技术特征摘要】
1.一种高稳定性PTC热敏组件,其特征在于:包含:(a)具有电阻正温度效应的芯材,芯材由上电极箔、下电极箔及紧密夹固在上下电极箔间的具有电阻正温度效应的材料层;其中:电阻正温度效应复合材料层包含至少一种结晶性高分子材料和至少一种分散于该结晶性高分子材料的导电填料,导电填料的体积电阻率低于200μΩ.cm,热导率大于10W/(m.K),粒径大小介于0.1μm至30μm,且D50不大于20μm;电极箔基材为金属或金属合金,其体积电阻率低于10μΩ.cm,热导率不低于100W/(m.K);(b)绝缘材料框:其框内尺寸与厚度同PTC芯材尺寸相近,在框厚、框内长、宽均较PTC芯材对应尺寸均不大于2mm;(c)绝缘半固化树脂材料:具有固化粘结性能,固化后能与绝缘树脂框和电极箔粘结;(d)电极箔:基材为金属或金属合金,其体积电阻率低于10μΩ.cm,热导率不低于100W/(m.K);(e)盲孔:孔内采用导电金属填满,连接最外表面端电极箔通过盲孔与PTC芯材表面的电极箔,导电金属体积电阻率低于10μΩ.cm,热导率不低于100W/(m.K)。2.根据权利要求1所述的正温度效应复合材料层,其特征在于:所述的结晶高分子材料为聚乙烯、氯化聚乙烯、氧化聚乙烯、聚氯乙烯、丁二烯-丙烯腈共聚物、丙烯腈-丁二烯-苯乙烯共聚物、聚苯乙烯、聚碳酸酯、聚酰胺、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚苯醚、聚苯硫醚、聚甲醛、酚醛树脂、聚四氟乙烯、四氟乙烯-六氟丙烯共聚物、聚三氟乙烯、聚氟乙烯、马来酸酐接枝聚乙烯、聚丙烯、聚偏氟乙烯、环氧树脂、乙烯-醋酸乙烯共聚物、聚甲基丙烯酸甲酯、乙烯-丙烯酸共聚物中的一种及其混合物。3...

【专利技术属性】
技术研发人员:方勇刘玉堂杨铨铨刘兵吴国臣
申请(专利权)人:上海长园维安电子线路保护有限公司
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1