用于微型行走机构的双动力系统及微型行走机构技术方案

技术编号:13487876 阅读:53 留言:0更新日期:2016-08-06 18:37
本实用新型专利技术提供了一种用于微型行走机构的双动力系统及微型行走机构,双动力系统包括:至少一个高压气瓶、气动马达、马达输出轴、固设于马达输出轴一端的马达主动轮、电机、电机输出轴、电池组、固设于电机输出轴一端的电机主动轮、以及位于马达输出轴和电机输出轴之间的输出轴、滑动设于输出轴一端的被动轮、和用于控制被动轮在电机主动轮和马达主动轮之间切换的切换机构;微型行走机构包括行走装置和驱动行走装置行走的上述双动力系统。本实用新型专利技术实现了电机和气动马达分段驱动,作为微型行走机构的动力源,两套动力系统各自独立,分段执行:微型行走机构在危险环境使用气动马达做动力,在无粉尘、无爆炸性气体的环境中使用电机驱动。

【技术实现步骤摘要】
【专利摘要】本技术提供了一种用于微型行走机构的双动力系统及微型行走机构,双动力系统包括:至少一个高压气瓶、气动马达、马达输出轴、固设于马达输出轴一端的马达主动轮、电机、电机输出轴、电池组、固设于电机输出轴一端的电机主动轮、以及位于马达输出轴和电机输出轴之间的输出轴、滑动设于输出轴一端的被动轮、和用于控制被动轮在电机主动轮和马达主动轮之间切换的切换机构;微型行走机构包括行走装置和驱动行走装置行走的上述双动力系统。本技术实现了电机和气动马达分段驱动,作为微型行走机构的动力源,两套动力系统各自独立,分段执行:微型行走机构在危险环境使用气动马达做动力,在无粉尘、无爆炸性气体的环境中使用电机驱动。【专利说明】用于微型行走机构的双动力系统及微型行走机构
本技术涉及驱动
,具体涉及一种用于微型行走机构的双动力系统及微型行走机构。
技术介绍
微型行走机构的工作环境(如井下)既有爆炸性环境也有非爆炸性环境,现有行走机构种类很多,其动力系统基本采用单动力驱动,动力机械的动力受爆炸性环境的制约通常需做隔爆型的结构设计,导致驱动部分占据了整体微型行走机构的大部分空间,使运动载体的整体结构笨重,驱动负荷加大。由于井下空间狭小、地形复杂,机械结构需要考虑其应用环境下的制约因素,包括微型行走机构的有限载荷和装载空间。微型行走机构主要依靠电池供电,在重量限制下,微型行走机构所携带的电池有限,提供的能量也是有限的。由于微型行走机构工作环境比较恶劣,在爬坡和越障时候能量消耗大,为了保证微型行走机构具有较长时间的续航能力,必须减少结构的负载,同时扩大供电电池的容量;但是扩大电池容量,会导致负荷增大;由于无法同时满足负载小和电量大的要求,微型行走机构的续航能力较差。
技术实现思路
本技术提出一种用于微型行走机构的双动力系统及微型行走机构,以解决现有微型行走机构的驱动机构体积大、驱动负荷大、续航能力较差的问题。本技术的技术方案是这样实现的:—种用于微型行走机构的双动力系统,包括:至少一个高压气瓶、气动马达、马达输出轴、和固设于马达输出轴一端的马达主动轮,气动马达通过马达输出轴带动马达主动轮转动;电机、电机输出轴、电池组和固设于电机输出轴一端的电机主动轮,电池组为电机供电,通过电机输出轴带动电机主动轮转动;位于马达输出轴和电机输出轴之间的输出轴、以及固设于输出轴一端的被动轮,电机主动轮和马达主动轮错落设置,使被动轮实现两者之间的切换,被动轮与电机主动轮或马达主动轮相啮合;和,切换机构,用于控制被动轮在电机主动轮和马达主动轮之间切换。作为本技术的进一步改进,还包括:拆卸机构,拆卸机构包括:电磁换向阀和气压传感器;高压气瓶通过电磁换向阀与气动马达连接;气压传感器设于气动马达的进气口处。作为本技术的进一步改进,拆卸机构还包括:两端开闭式气动快速接头;高压气瓶通过气动快速接头与电磁换向阀连接。作为本技术的进一步改进,还包括:用于固定高压气瓶的夹持装置。作为本技术的进一步改进,拆卸机构还包括:用于向高压气瓶施力的推杆。作为本技术的进一步改进,还包括:用于检测环境状况的环境传感器。作为本技术的进一步改进,切换机构包括:固设于输出轴上的拔动块,和用于推动拔动块活动的气缸,拔动块位于被动轮的一侧。作为本技术的进一步改进,还包括:控制器,其分别与气压传感器、电磁换向阀、环境传感器、气缸电连接。作为本技术的进一步改进,电池组包括两组或多组电池组。本技术还涉及一种微型行走机构,包括行走装置和驱动行走装置行走的动力系统;动力系统为上述用于微型行走机构的双动力系统。本技术的有益效果如下:1、本技术的双动力系统实现了电机和气动马达分段驱动,作为微型行走机构的动力源,两套动力系统各自独立,分段执行:微型行走机构在危险环境使用气动马达做动力,在无粉尘、无爆炸性气体的环境中使用电机驱动;电机无需做隔爆结构设计,减小了驱动部分的体积和重量,降低了驱动的负荷。2、本技术提供动力的高压气瓶为可拆装形式,当瓶内的气体使用完后,即可自动卸到沿途,当返程时再收装运回充气站进行充气,进一步降低了驱动的负荷,提高了续航能力。【附图说明】为了更清楚地说明本技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1是实施例中用于微型行走机构的双动力系统中电机驱动的结构示意图;图2是实施例中用于微型行走机构的双动力系统中气动马达驱动的结构示意图;图3是实施例中拆卸机构的结构示意图。【具体实施方式】下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。如图1和2所示,为实施例中用于微型行走机构的双动力系统的结构示意图。说明性实施例中的用于微型行走机构的双动力系统,包括:至少一个高压气瓶1、气动马达2、马达输出轴3、固设于马达输出轴3—端的马达主动轮4、电机10、电机输出轴9、电池组11、固设于电机输出轴9一端的电机主动轮8、以及位于马达输出轴3和电机输出轴9之间的输出轴6、滑动设于输出轴6—端的被动轮7、和用于控制被动轮7在电机主动轮8和马达主动轮4之间切换的切换机构;气动马达2通过马达输出轴3带动马达主动轮4转动;电池组11为电机10供电,通过电机输出轴9带动电机主动轮8转动;电机主动轮8和马达主动轮4错落设置,使被动轮7实现两者之间的切换,被动轮7与电机主动轮8或马达主动轮4相啮合。气动马达2只要通过控制进气阀、排气阀的开度,控制压缩空气的流量,实现调节马达的输出功率与转速,达到调节机器人的巡视速度;通过操作阀来改变马达的进气的方向,来实现马达输出轴3的正反转,使微型行走机构实现正、反向运动。同样通过电机10的换相,来实现电机输出轴9的正反转,调节电压的高低,实现调节电机输出轴的功率与转速,达到调节微型行走机构的巡视速度。实施例中的用于微型行走机构的双动力系统,还包括:用于检测环境状况的环境传感器。实施例中环境传感器包括用于检测甲烷浓度的传感器、用于检测可燃气体浓度的传感器、以及用于检测粉尘浓度的传感器等。实施例中的切换机构可以是任何现有技术,只要能够实现使输出轴6上的被动轮7在电机主动轮8和马达主动轮4之间切换即可,如汽车换挡装置。优选地,切换机构包括:固设于输出轴6上的拔动块5,和用于推动拔动块5活动的气缸,拔动块5位于被动轮7的一侧。实施例中的用于微型行走机构的双动力系统,还包括:控制器,其分别与环境传感器、气缸电连接。实施例中控制器为单片机或PLC等。实施例中当环境传感器检测到环境变化时,发出指令到控制器,控制器控制气缸拨动拔动块5,将被动轮7沿着输出轴6轴线移动一个设计距离,使其与电机主动轮8(如图1所示)或马达主动轮4(如图2所示)啮合,实现输出轴6的转动。为了延长微型行走机构的工本文档来自技高网
...

【技术保护点】
一种用于微型行走机构的双动力系统,其特征在于,包括:至少一个高压气瓶(1)、气动马达(2)、马达输出轴(3)、和固设于所述马达输出轴(3)一端的马达主动轮(4),所述气动马达(2)通过所述马达输出轴(3)带动所述马达主动轮(4)转动;电机(10)、电机输出轴(9)、电池组(11)和固设于所述电机输出轴(9)一端的电机主动轮(8),所述电池组(11)为所述电机(10)供电,通过所述电机输出轴(9)带动所述电机主动轮(8)转动;位于所述马达输出轴(3)和所述电机输出轴(9)之间的输出轴(6)、以及固设于所述输出轴(6)一端的被动轮(7),所述电机主动轮(8)和所述马达主动轮(4)错落设置,使所述被动轮(7)实现两者之间的切换,所述被动轮(7)与所述电机主动轮(8)或所述马达主动轮(4)相啮合;和,切换机构,用于控制被动轮(7)在所述电机主动轮(8)和所述马达主动轮(4)之间切换。

【技术特征摘要】

【专利技术属性】
技术研发人员:高波刘玉芳
申请(专利权)人:山西科达自控股份有限公司
类型:新型
国别省市:山西;14

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1