无人机辅助车载道路采集三维建模系统技术方案

技术编号:12688930 阅读:209 留言:0更新日期:2016-01-09 03:33
本实用新型专利技术公开了一种无人机辅助车载道路采集三维建模系统,解决了现有道路采集及三维建模系统建模不够准确、精确度不高等问题。该无人机辅助车载道路采集三维建模系统包括:载体车;无人机;数据采集系统,数据采集系统包括车载LIDAR、车载SLAM和机载LIDAR;数据分析系统,获取精度优化后点云;数据拼接系统,将精度优化后的车载LIDAR点云、机载LIDAR点云和SLAM数据通过融合边界相拼接,形成整体化的定位信息;道路三维建模系统,将道路护栏、边坡、天桥、桥梁下部、隧道外山坡和隧道内部模块进行集成,形成道路三维模型。本实用新型专利技术以车载LIDAR为主,无人机为辅,车载LIDAR结合无人机可实现对目标道路数据的全面采集。

【技术实现步骤摘要】

本技术涉及一种道路采集及三维建模系统,具体的说,是涉及一种无人机辅助车载道路采集三维建模系统
技术介绍
目前的道路采集及三维建模系统,主要采用以下两种技术方案:(I)借助于卫星影图的拍摄,然后利用拍摄到的影像构建三维地图。该方法的缺陷在于,对影像的模拟数据的处理和地图的构建工作量十分庞大,且显示的三维地图难以达到足够清晰和逼近现实,道路的隧道内无法获取数据。(2)采用车载系统采集道路数据,然后根据采集的数据建成道路三维模型。该方法的缺陷在于,对道路信息的采集不够全面,例如桥梁的墩柱等下部构造无法采集,因此建模不够准确。此外,上述两种方案,都需要采用GPS或北斗导航等卫星定位系统,对于隧道内无卫星信号的区域,无法实现定位,故无法建立隧道内的三维模型。
技术实现思路
本技术的目的在于克服上述缺陷,提供一种可快速进行道路的数据采集和建模人机辅助车载道路采集三维建模系统。—种无人机辅助车载道路采集三维建模系统,包括:载体车;无人机;数据采集系统,所述数据采集系统包括设置在所述载体车上的车载LIDAR和车载SLAM,设置在所述无人机上的机载LIDAR ; 数据分析系统,根据所述数据采集系统采集的数据获取精度优化后点云;数据拼接系统,将精度优化后的车载LIDAR点云、机载LIDAR点云和SLAM数据通过融合边界相拼接,形成整体化的定位信息;道路三维建模系统,将道路护栏、边坡、天桥、桥梁下部、隧道外山坡和隧道内部模块进行集成,形成道路三维模型。进一步的,所述载体车包括车本体,设置在所述车本体内的电源系统,在所述车本体内的尾部设置有无人机停放及充电平台,所述无人机停放及充电平台与所述电源系统连接,以供所述无人机停放和充电;所述车载LIDAR和车载SLAM设置在所述车本体的顶部。与现有技术相比,本技术具有以下有益效果:(I)本技术以车载LIDAR为主,无人机为辅,车载LIDAR结合无人机可实现对目标道路数据的全面采集,有效地克服了现有技术中道路信息采集不完善的缺陷,且无人机仅进行桥梁下部数据采集,对无人机飞行时间的要求降低。(2)本技术集成SLAM技术,减少对卫星信号的依赖程度,对隧道内传统方法无法定位的区域可实现精准定位和数据采集。(3)与现有技术相比,本技术数据采集速度快、数据处理的自动化程度高、三维建模的整体生产效率高等,因此,进行道路三维建模的项目开发成本相对要低;另一方面,车载移动激光扫描测量采用驾车方式即可完成道路的测量,且数据处理自动化程度高,可极大的节省项目开发成本。【附图说明】图1为本技术的流程示意图。图2为本技术中数据采集系统的系统框图。图3为本技术中载体车部分的结构示意图。其中,附图标记对应的名称如下:1-车本体,2-电源系统,3-无人机停放及充电平台ο【具体实施方式】下面结合实施例对本技术作进一步说明,本技术的实施方式包括但不限于下列实施例。实施例如图1、2所示,本实施例提供了一种无人机辅助车载道路采集三维建模系统,该建模系统以载体车及其上的子系统为主,无人机及其上的子系统为辅,其理由载体车及其上的子系统快速进行道路的数据采集,然后利用采集的数据生成道路三维模型。由于车载道路数据采集系统无法采集桥梁的墩柱等下部构造信息,故采用无人机对桥梁的墩柱等下部构造信进行精准扫描和采集,获取桥梁下部的三维数据。同时,车载数据采集模块中集成SLAM系统,可实现卫星信号无法到达的地方的精准定位,精确采集隧道内的三维数据,并与隧道外的GPS卫星信息相拼接,实现完整的道路三维信息采集和模型制作,最终实现用较小的成本、较快的速度和较低的工作量,实现完整、逼真的三维道路地图。本技术的优势主要在于对道路数据采集的完整性和精确性。本实施例中载体车主要设置有车载LIDAR和车载SLAM两个子系统,无人机上设置有机载LIDAR子系统,车载LIDAR、车载SLAM和机载LIDAR构成数据采集系统。采集前,对车载LIDAR、机载LIDAR和车载SLAM进行校验运行,实现对各系统设备的参数检校。然后,在目标道路上进行行走和采集,遇到桥梁时,由无人机对桥梁墩柱等下部构造进行航拍,遇到隧道时,开启SLAM系统实现自我定位并获取隧道信息,最终获取包括LIDAR点云和影像的道路原始数据成果。具体的说:通过车载LIDAR获取行驶轨迹信息、路面车道与宽度信息、路面纹理信息、路面高程信息、路口信息、道路护栏信息、道路绿化信息、道路下穿天桥信息、道路边坡信息、隧道洞口山坡信息和道路标志信息;车辆行驶遇到桥梁时,通过无人机及机载LIDAR获取桥台信息、桥墩外观几何尺寸信息、桥梁混凝土便面纹理信息和桥梁梁底外观信息;车辆行驶入隧道时,开启车载SLAM,获取车辆位置轨迹信息、隧道内外观信息、隧道路面高程信息、水沟盖板信息、紧急停车带信息、车行人行横洞信息、隧道混凝土便面纹理信息和表面几何尺寸信息。数据采集步骤如下:首先,由载体车在目标道路上行驶,通过车载LIDAR子系统获取行驶轨迹信息、路面车道与宽度信息、路面纹理信息、路面高程信息、路口信息、道路护栏信息、道路绿化信息、道路下穿天桥信息、道路边坡信息、隧道洞口山坡信息和道路标志信息。当车辆行驶至桥梁位置时,将车停在安全的位置,将载有LIDAR的无人机开启,通过无线遥感技术控制无人机的飞行,获取桥台信息、桥墩外观几何尺寸信息、桥梁混凝土便面纹理信息和桥梁梁底外观信息。桥梁数据采集结束后,无人机飞入车内,车辆继续前进。当车辆行驶入隧道时,开启车载SLAM系统,获取车辆位置轨迹信息、隧道内外观信息、隧道路面高程信息、水沟盖板信息、紧急停车带信息、车行人行横洞信息、隧道混凝土便面纹理信息和表面几何尺寸信息。采集到的信息经过数据分析系统进行分析优化,即根据LIDAR点云生成原理,建立点云系统的误差模型,用于剔除重复和无效信息,以获取精度优化后的车载LIDAR点云、机载LIDAR点云。获取了精度优化后点云,但这些信息是零散的、缺乏系统性的,此时,需通过数据拼接系统对上述信息进行拼接。数据拼接系统,以车载LIDAR和车载SLAM获取的行车轨迹和高程数据为三维坐标系统,将精度优化后的车载LIDAR点云、机载LIDAR点云和SLAM数据通过融合边界相拼接,形成整体化的定位信息。道路三维建模系统,以数据拼接系统获得的三维道路模块为基础,以融合边界技术为支撑,将数据采集获得的LIDAR照片、影像融入三维道路模块,包括以下步骤:首先,对精度优化后点云进行地面点滤波分类,识别地面点云,以地面点云为参考进行非地面点滤波分类,识别非地面点云,分别形成道路护栏、边坡、天桥、桥梁下部、隧道洞口山坡和隧道内部的不同模块,进行地物有效分析区和地物对应点云集的提取。然后,在三维建模系统下,根据地物参数模型库,进行精度优化后地面点云和照片融合模式下的地物高精三维建模,生成道路高清模型。最后,将道路护栏、边坡、天桥、桥梁下部、隧道外山坡和隧道内部模块进行集成,形成道路高清三维模型。具体的,采用LIDAR激光点云数据制作包含有坐标系信息的坐标系图层,制作反应地表高度的地表高程图层,地表高程图层呈现目标道路区域的地形、地貌特征,通过地图来呈现地面的高、低起伏情况。根据LID本文档来自技高网...

【技术保护点】
一种无人机辅助车载道路采集三维建模系统,其特征在于,包括:载体车;无人机;数据采集系统,所述数据采集系统包括设置在所述载体车上的车载LIDAR和车载SLAM,以及设置在所述无人机上的机载LIDAR;数据分析系统,根据所述数据采集系统采集的数据获取精度优化后点云;数据拼接系统,将精度优化后的车载LIDAR点云、机载LIDAR点云和SLAM数据通过融合边界相拼接,形成整体化的定位信息;道路三维建模系统,将道路护栏、边坡、天桥、桥梁下部、隧道外山坡和隧道内部模块进行集成,形成道路三维模型。

【技术特征摘要】

【专利技术属性】
技术研发人员:申法山张森连朝晖陈守安田彦龙翟建勋张伯南
申请(专利权)人:四川隧唐科技股份有限公司
类型:新型
国别省市:四川;51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1