面向在轨服务的快速翻滚目标消旋细胞帆的工作方法技术

技术编号:12615283 阅读:142 留言:0更新日期:2015-12-30 13:06
面向在轨服务的快速翻滚目标消旋细胞帆的工作方法,它涉及一种消旋细胞帆的工作方法。本发明专利技术为了解决现在的非接触式消旋方案对失控卫星本体造成的可能性二次损害,以及存在结构复杂、消旋效率低和消旋成本低的问题。在本发明专利技术中,消旋卫星由母星和细胞帆构成,细胞帆作为附着在失控卫星上的角动量消旋装置,是执行消旋任务的具体执行机构,母星是消旋力矩的能量源,同时也是控制中心,在消旋之前,细胞帆是藏于母星中,工作时细胞帆通过接近、吸附、消旋、回收等一系列过程,与母星协同完成对失控卫星的消旋。本发明专利技术适用于对空间快速翻滚目标进行消旋。

【技术实现步骤摘要】

本专利技术涉及,属于航天器在轨服务

技术介绍
对失控航天器进行维修、离轨处理等是在轨服务的核心工作之一。失控目标大都会出现高速旋转,如果直接对其进行操作,会对服务航天器抓取或对接等在轨操作带来困难,或对抓取或对接机构造成冲击损害,甚至会造成服务航天器的失稳。因此有必要在对失控航天器进行维修或离轨处理前,消除其快速翻滚的角动量。在2006年我国某型号资源卫星由于陀螺停转导致快速翻滚进而故障,开展的第一步抢救工作即是对整星进行消旋,姿态稳定后恢复电源供应,确保了后续抢救工作的成功开展。多位学者也针对在轨服务航天器进行快速翻滚卫星的动量消旋,分别提出了多种方案。目前对姿态失控翻滚卫星的这些消旋方案,大致可以分为两类,其中一类是接触式角动量消旋方案;另一类是非接触式角动量消旋方案,又可分为直接型非接触式和间接型非接触式。对于物理接触式的消旋方案,Saburo Matunaga的团队提出在机械臂的末端安装阻尼小球,在服务卫星靠近失控星后,选择合适的接触点去触碰失控星,多次接触后使失控卫星角动量减少。然而,这种方案对于阻尼小球作用在失控星上的力的大小要求较精确的控制。若作用力过大,会由于冲击而损坏失控星,甚至由于反作用力过大而影响服务卫星的姿态稳定。英国斯特拉斯克莱德大学的Albert Caubet和James D.Biggs提出一种利用磁力矩器对失控卫星进行消旋的方案。首先,他们试图利用一种“鱼叉”装置捕获失控卫星,然后把消旋模块卫星快速拉向失控卫星,利用小钻头破坏失控卫星表面从而实现附着,再进行磁力消旋。为了不破坏卫星表面结构,他们又提出利用小型喷气装置实现对失控卫星的靠近,利用吸盘装置进行附着,最后再实施磁力消旋。但是这种方案需要模块卫星上配备复杂的喷气系统,会增大系统质量以及增加控制规律的复杂性。对于非物理接触式的消旋方案,Fumihito Sugai的团队则提出利用祸流制动的方案,对失控卫星实施非物理接触的消旋。他们设想“猎人”卫星伸出两个通电线圈靠近失控卫星在失控卫星周围产生磁场,失控卫星在磁场中旋转,表面产生涡流,从而消耗能量实现消旋。虽然非物理接触的方法能避免机械臂抓捕失控卫星时的撞击危险,但是这种方案需要“猎人”卫星一直与失控卫星保持近距离伴飞,对控制精度要求高,而且消旋速度慢,会消耗“猎人”卫星大量燃料。M.Merino等人提出了一种利用喷射离子束对失控卫星进行消旋的方案,对失控卫星进行消旋只是他们方案中一个附加的功能,他们方案主要是辅助失控星离轨。服务卫星上装有离子束发生器,可以在距离失控星较远的位置对其喷射离子束,产生动量交换实现消旋。这种方案需要离子束发生器持续工作,对服务卫星的负载功率提出了较高要求。另外,离子束打在失控星上产生的羽流可能会造成不确定的负面影响,离子束还会对失控星形成表面充电效应,有进一步损坏失控星的可能。
技术实现思路
本专利技术的目的是为了解决现在的非接触式消旋方案对失控卫星本体造成的可能性二次损害,以及存在结构复杂、消旋效率低和消旋成本低的问题,进而提供。本专利技术的技术方案是:消旋由母星和细胞帆协同完成,母星作为激光器的载体,是消旋力矩的能量源,同时作为控制指令的发送端,是细胞帆的控制中心,而细胞帆作为附着在失控卫星上的角动量消旋装置,是执行消旋任务的具体执行机构。所述工作方法包括以下步骤:步骤一、细胞帆与母体服务卫星分离;步骤二、在母星发射的激光推进控制作用下,细胞帆接近失控翻滚目标;步骤三、细胞帆与失控卫星表面接触,利用细胞帆上的仿生壁虎爪,产生附着力对失控卫星表面进行吸附;步骤四、基于细胞帆对目标进行角动量消旋;步骤五、细胞帆通过陀螺仪测量失控卫星的角速度,当角速度小于预先设定的10 3rad/s的阈值时,细胞帆通过通信系统向母星发送指令,母星停止工作;步骤六、细胞帆与失控星分离,等待母星回收。所述步骤二中采用激光推进控制,其具体原理为:细胞帆帆面采用光子石墨烯材料,基于光子石墨烯在光照射下向外发射电子的原理,母星通过发射激光,并对准细胞帆上的石墨烯光帆结构,光子石墨烯材料在激光照射下吸收能量向外喷射电子,产生反作用推力,推力大小是通过改变激光的强度或者改变光帆受照射的面积来控制,推力的方向则是通过改变光帆面的位置来控制。所述步骤二中所述细胞帆接近失控翻滚目标,其具体步骤为:首先:母体通过装在自身的视觉测量系统测量细胞帆与目标卫星之间的相对距离,同时接受细胞帆发送的角速度信息;其次:母星根据视觉测量系统测量到的信息,利用星载计算机中的预设程序计算出细胞帆的飞行控制指令,用以确定细胞帆的飞行姿态以及进行轨迹规划;最后:细胞帆接收母星的控制指令,利用细胞帆上的两自由度云台使石墨烯光帆改变指向,产生力矩使得细胞帆进行姿态机动。所述步骤三中细胞帆采用仿真壁虎爪对失控卫星进行吸附,吸附过程为:仿生壁虎爪是采用由纳米管阵列组成,通过纳米级的刚毛与目标卫星表面分子之间产生范德瓦尔斯力,仿生壁虎爪积累产生最大36N/cm2的粘附力,形成刚性连接,使得细胞帆附着在失控翻滚卫星非自旋轴刚性表面上。所述步骤四中所述的基于细胞帆对目标进行消旋,其具体步骤为:首先:细胞帆附着在目标卫星上之后,通过细胞帆上的三轴陀螺仪测得系统的旋转角速度矢量方向,并把角速度矢量信息反馈给母星;其次:母星通过视觉系统测量获得细胞帆附着点位置信息,并结合细胞帆反馈的角速度矢量信息,通过星载计算机计算得到细胞帆帆面合适的指向位置;再次:母星发送细胞帆帆面位置指令,细胞帆接收并执行,通过两自由度云台作用把帆面位置调到该位置;最后:母星通过视觉系统观察失控卫星和细胞帆组成系统的状态,当细胞帆的帆面随失控卫星转到对着母星的一面时,母星调整激光器对细胞帆帆面发射激光产生消旋力矩。所述步骤六中所述的细胞帆与失控星分离,等待母星回收,其具体步骤为:首先:细胞帆通过电压信号控制细胞帆尾部仿生壁虎爪上的IPMC人工肌肉;其次:人工肌肉结构带动仿生壁虎爪上的碳纳米管阵列,使细胞帆脱离失控卫星;再次:母星靠近失效卫星,通过机械臂抓取细胞帆;最后:母星抓取细胞帆后,将其置于原存放位置,等待下一次任务。本专利技术与现有技术相比具有以下效果:—、本专利技术改善了现有消旋方案的复杂度以及可能对失控星带来的二次损害。首先,依靠细胞帆上仿生壁虎爪的碳纳米管阵列对失控星进行吸附,相对于钻孔固定、网捕等其他吸附方式,能有效避免对失控卫星表面造成的损坏;其次,消旋过程中母星的激光照射在石墨烯帆板上,不直接作用在失控星上,不会对失控星造成损坏。二、相比于使用磁力据器等传统消旋方案,本专利技术方案将较大缩短消旋时间。由于石墨烯光帆在激光照射下一般能产生10 2N.m的消旋力矩,较之普通磁力矩器10 3N.m的消旋力矩增大一个数量级,可以有效缩短消旋时间。三、在基于光帆的细胞帆推进控制过程中,利用光子石墨烯材料喷射电子产生反作用力的新原理产生推力,实现光致动。相比于传统光致动原理(烧蚀物质产生推力、辐射压产生推力),此种方式产生的推力要大数百倍,使得对母星产生的激光的功率要求大大降低,从而提高了方案的工程可行性,系统的复杂程度降低了 30-50%。四、本专利技术中的细胞帆可根据实际不同任务的需求,携带不同大小的石墨烯光帆,实现模块化、系列化设本文档来自技高网
...
<a href="http://www.xjishu.com/zhuanli/33/CN105197261.html" title="面向在轨服务的快速翻滚目标消旋细胞帆的工作方法原文来自X技术">面向在轨服务的快速翻滚目标消旋细胞帆的工作方法</a>

【技术保护点】
一种面向在轨服务的快速翻滚目标消旋细胞帆及其工作方法,其特征在于:在本消旋过程中,消旋卫星由母星和细胞帆构成,细胞帆作为附着在失控卫星上的角动量消旋装置,是执行消旋任务的具体执行机构,母星是消旋力矩的能量源,同时也是控制中心,在消旋之前,细胞帆是藏于母星中,工作时细胞帆附着在失控星上,为了实现对失控卫星的消旋,母星变轨接近失控卫星,当到达距离失控卫星适当的位置时,细胞帆从母星中通过弹射机构在轨发射,使自身具有一定的初速度,然后细胞帆通过接近、吸附、消旋、回收等一系列过程,与母星协同完成对失控卫星的消旋。

【技术特征摘要】

【专利技术属性】
技术研发人员:张世杰罗振杰聂涛顾远凌江雨南范一迪
申请(专利权)人:哈尔滨工业大学
类型:发明
国别省市:黑龙江;23

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1