一种实现能量阶梯利用的区域内综合能量回收利用系统技术方案

技术编号:12272111 阅读:89 留言:0更新日期:2015-11-04 19:14
本实用新型专利技术涉及一种实现能量阶梯利用的区域内综合能量回收利用系统,特别涉及一种区域内部采暖、制冷、生活用水等所涉及的能源供应、输配、使用以及回收的综合系统。通过对燃气锅炉烟气的热量回收,配合区域内部建筑能耗的统一管理,为根本解决建筑能源利用、实现节能环保提供了全面的技术方案及具体实施方法。

【技术实现步骤摘要】

本技术涉及一种实现能量阶梯利用的区域内综合能量回收利用系统,特别涉及一种区域内部采暖、制冷、生活用水等所涉及的能源供应、输配、使用以及回收的综合系统。
技术介绍
能源的高效利用与节能环保已成为决定人类社会能否长期可持续快速发展的关键问题,正日益受到人们的重视,而如何利用好各种生产过程中产生的余热,对解决能源的高效利用与节能环保问题具有十分重要的意义。从总体上看,我国目前的能源供应及安全形势日趋紧张,很多产品的单位能耗与发达国家相比差距很大。以建筑能耗为例,目前我国每年建成的建筑物面积大20亿平方米,其中95%以上属高能耗建筑,单位建筑面积采暖能耗为发达国家3倍以上。采暖、空调能耗约占建筑能耗的一半以上,全国各电网空调制冷负荷相当于3个三峡电站。主要耗能设备效率较低,能源利用效率与国际先进水平相比有较大差距。随着能源结构向清洁低碳转型,我国天然气用量不断加大,天然气用能设备发展迅速,如何实现燃气的高效利用逐步成为当今节能的重要课题。目前普通燃气锅炉等热能动力设备排烟温度约150?250°C,排烟热损失达到20%以上,造成能源浪费和环境污染。目前市场上应用最多的是在燃气锅炉尾部加装烟气余热利用回收装置,由于受被加热介质的温度限制,即采暖回水温度一般较高,经烟气余热回收利用装置后排烟温度仍在55°C以上,烟气中还有近一半的余热被浪费。应用于余热回收的锅炉主要有火管余热锅炉、水管余热锅炉和热管余热锅炉三大类,其中火管余热锅炉就是烟气在火筒或烟管中流过,对火筒或烟管外水、汽或汽水混合物加热;水管余热锅炉就是管子里面走水,通过外部烟气对流/辐射换热加热管子中的水;热管余热锅炉,就是利用热管的蒸发段吸收烟气或废气的余热,而通过冷凝段将热量传递给热管外的水、汽或汽水混合物,火管余热锅炉具有结构简单、对水质要求低、操作容易等优点,但存在金属耗量大、烟气纵向冲刷而传热效果差、排烟温度较高的缺点;存在水容量大、启动较慢的缺点;还存在烟管内易积灰、烟管外难清垢的问题;另外还存在无法适应于大容量和高参数工况的余热回收工程的问题;水管余热锅炉的受热面布置方便,传热性能好,在结构上可用于大容量和高参数的工况;但是水系统与主锅炉(或生产过程)的高温烟气直接接触,一旦发生泄露现象,不仅水管余热锅炉需立刻停炉检修,提供余热的主锅炉(或生产过程)也可能需要紧急处理,甚至停产;另外,水管余热锅炉各不同位置的管道温度差异很大,也无法准确控制烟气出口温度,故难以避免低温酸腐蚀破坏现象;而且锅炉初期运行时,锅炉进的是冷水,预热需要一段时间,水管余热锅炉因采用直接换热,管壁温度接近常温水,这样设备表面极易出现结露,粘灰等不良现象;热管余热锅炉彻底隔离了热源和冷源,不会产生冷热流体的掺混,但现有的热管大部分都是利用许多根重力型热管组合而成,水路与烟道还是必须紧连在一起,工程布置难度大;几十、几百乃至几千根热管紧密布置,不易于检修,也难以发现哪根热管已失效;几十、几百乃至几千根热管的工作工况各不相同,整体换热量无法控制,排烟温度也无法有效控制,同样难以避免出现酸露点而造成管道或换热器的腐蚀现象;另外,实际应用时存在:热管长时间运行后,会有不凝结气体产生,造成气塞,使得热管内的工质无法自然循环而失效,有时甚至出现外壁干烧,爆管等现象。
技术实现思路
针对上述问题,本技术的目的是提供一种实现能量阶梯利用的区域内综合能量回收利用系统,特别地,包括控制系统,燃气锅炉,能量回收设备,中水池,热栗,换热设备,空调机组,空调热栗机组,双工况制冷主机。其中,控制系统,包括数据采集系统、监控系统和传感器,数据采集系统通过传感器采集所述综合能量回收利用系统各末端的参数,所述参数至少包括温度、压力参数,监控系统实时监测所述综合能量回收利用系统的运行参数;燃气锅炉内输入燃料燃烧后产生的烟气进入能量回收设备的烟道的烟气入口,并经能量回收设备的烟气出口排出;能量回收设备的主体结构包括烟气入口、烟气出口、烟道、冷凝水箱、PH值调节系统、热力除氧器、气液收集管、热管蒸发器、均液管、分液器、节能器用热管循环、沸腾段用热管循环、过热器用热管循环、节能器后温度传感器、沸腾段后温度传感器、过热器后温度传感器、气液两相流母管、热管循环冷凝器、供液母管、汽包水位线、汽包、汽包压力指示传感器、饱和蒸汽管、饱和蒸汽温度传感器、过热器热管循环冷凝器出汽管、过热器用热管循环冷凝器进汽管、过热蒸汽温度传感器、软化水管、给水栗、气液分配管、节能器用热管循环冷凝器出水管、节能器用热管循环冷凝器进水管、冷凝器高点排气阀、汽包水位指示传感器、多功能罐排气阀、多功能储液罐、排污阀、连接管、溶液栗、输液管和中央控制器,按功能分为逆流气液两相流热管余热回收节能器子系统、气液两相流热管余热回收沸腾段子系统、逆流气液两相流热管余热回收过热段子系统、水汽流动子系统和中央控制子系统;η(Ι^η^ΙΟ)个节能器用热管循环按照逆流结构形式布置构成逆流气液两相流热管余热回收节能器子系统,10)个沸腾段用热管循环构成气液两相流热管余热回收沸腾段子系统,k(l < 10)个过热器用热管循环按照逆流结构形式布置构成逆流气液两相流热管余热回收过热器子系统;烟道的两端分别为烟气入口和烟气出口 ;每个热管循环的上端均设有安装在烟道内的热管蒸发器,每个热管蒸发器的两侧均分别设有气液收集管和均液管;每个热管循环的热管蒸发器均对应一个热管循环冷凝器,每个热管循环冷凝器的一侧均设有气液分流管;气液收集管通过气液两相流母管与气液分流管连通,每个热管循环冷凝器的下端均连接制有多功能储液罐,多功能储液罐的上下两端分别设有多功能罐排气阀和排污阀,多功能储液罐和溶液栗之间通过连接管连通;均液管的下端设有分液器,分液器通过供液母管与溶液栗连通;每个节能器用热管循环冷凝器的上端均设有冷凝器高点排气阀,下端分别设有节能器用热管循环冷凝器出水管和节能器用热管循环冷凝器进水管,用于连通相邻两个节能器用热管循环;第I个节能器用热管循环冷凝器进水管与给水栗的一端连通,给水栗的另一端与软化水管连通;沸腾段用热管循环冷凝器之间通过汽包连通;汽包的一端与第η个节能器用热管循环冷凝器出水管连通,另一端连接制有汽包水位指示传感器;汽包内设有汽包水位线,汽包水位线指示汽包内水的允许范围;汽包的上端设有汽包压力指示传感器;第m个沸腾段用热管循环冷凝器处的汽包上端制有饱和蒸汽管,汽包通过饱和蒸汽管与第I个过热器用热管循环冷凝器连通,饱和蒸汽管上设有饱和蒸汽温度传感器;第I个过热器用热管循环冷凝器上端设有第I个过热器用热管循环冷凝器出汽管,其它过热器用热管循环冷凝器的上端分别设有过热器用热管循环冷凝器进汽管和过热器用热管循环冷凝器出汽管,第k个过热器用热管循环冷凝器出汽管上连接制有过热蒸汽温度传感器;逆流气液两相流热管余热回收节能器子系统后设有节能器后温度传感器,气液两相流热管余热回收沸腾段子系统后设有沸腾段后温度传感器,逆流气液两相流热管余热回收过热段子系统后设有过热器后温度传感器,中央控制子系统的中央控制器分别通过节能器后温度传感器、沸腾段后温度传感器和过热器后温度传感器获得和控制烟气温度,并对溶液栗进行双位控制或变频连续控制;冷凝水箱用于收集烟气本文档来自技高网
...

【技术保护点】
一种实现能量阶梯利用的区域内综合能量回收利用系统,其特征在于:包括控制系统,燃气锅炉,能量回收设备,中水池,热泵,换热设备,空调机组,空调热泵机组,双工况制冷主机;其中,控制系统,包括数据采集系统、监控系统和传感器,数据采集系统通过传感器采集所述综合能量回收利用系统各末端的参数,所述参数至少包括温度、压力参数,监控系统实时监测所述综合能量回收利用系统的运行参数;燃气锅炉内输入燃料燃烧后产生的烟气进入能量回收设备的烟道的烟气入口,并经能量回收设备的烟气出口排出;能量回收设备的主体结构包括烟气入口、烟气出口、烟道、冷凝水箱、PH值调节系统、热力除氧器、气液收集管、热管蒸发器、均液管、分液器、节能器用热管循环、沸腾段用热管循环、过热器用热管循环、节能器后温度传感器、沸腾段后温度传感器、过热器后温度传感器、气液两相流母管、热管循环冷凝器、供液母管、汽包水位线、汽包、汽包压力指示传感器、饱和蒸汽管、饱和蒸汽温度传感器、过热器热管循环冷凝器出汽管、过热器用热管循环冷凝器进汽管、过热蒸汽温度传感器、软化水管、给水泵、气液分配管、节能器用热管循环冷凝器出水管、节能器用热管循环冷凝器进水管、冷凝器高点排气阀、汽包水位指示传感器、多功能罐排气阀、多功能储液罐、排污阀、连接管、溶液泵、输液管和中央控制器,按功能分为逆流气液两相流热管余热回收节能器子系统、气液两相流热管余热回收沸腾段子系统、逆流气液两相流热管余热回收过热段子系统、水汽流动子系统和中央控制子系统;n(1≤n≤10)个节能器用热管循环按照逆流结构形式布置构成逆流气液两相流热管余热回收节能器子系统,m(1≤m≤10)个沸腾段用热管循环构成气液两相流热管余热回收沸腾段子系统,k(1≤k≤10)个过热器用热管循环按照逆流结构形式布置构成逆流气液两相流热管余热回收过热器子系统;烟道的两端分别为烟气入口和烟气出口;每个热管循环的上端均设有安装在烟道内的热管蒸发器,每个热管蒸发器的两侧均分别设有气液收集管和均液管;每个热管循环的热管蒸发器均对应一个热管循环冷凝器,每个热管循环冷凝器的一侧均设有气液分流管;气液收集管通过气液两相流母管与气液分流管连通,每个热管循环冷凝器的下端均连接制有多功能储液罐,多功能储液罐的上下两端分别设有多功能罐排气阀和排污阀,多功能储液罐和溶液泵之间通过连接管连通;均液管的下端设有分液器,分液器通过供液母管与溶液泵连通;每个节能器用热管循环冷凝器的上端均设有冷凝器高点排气阀,下端分别设有节能器用热管循环冷凝器出水管和节能器用热管循环冷凝器进水管,用于连通相邻两个节能器用热管循环;第1个节能器用热管循环冷凝器进水管与给水泵的一端连通,给水泵的另一端与软化水管连通;沸腾段用热管循环冷凝器之间通过汽包连通;汽包的一端与第n个节能器用热管循环冷凝器出水管连通,另一端连接制有汽包水位指示传感器;汽包内设有汽包水位线,汽包水位线指示汽包内水的允许范围;汽包的上端设有汽包压力指示传感器;第m个沸腾段用热管循环冷凝器处的汽包上端制有饱和蒸汽管,汽包通过饱和蒸汽管与第1个过热器用热管循环冷凝器连通,饱和蒸汽管上设有饱和蒸汽温度传感器;第1个过热器用热管循环冷凝器上端设有第1个过热器用热管循环冷凝器出汽管,其它过热器用热管循环冷凝器的上端分别设有过热器用热管循环冷凝器进汽管和过热器用热管循环冷凝器出汽管,第k个过热器用热管循环冷凝器出汽管上连接制有过热蒸汽温度传感器;逆流气液两相流热管余热回收节能器子系统后设有节能器后温度传感器,气液两相流热管余热回收沸腾段子系统后设有沸腾段后温度传感器,逆流气液两相流热管余热回收过热段子系统后设有过热器后温度传感器,中央控制子系统的中央控制器分别通过节能器后温度传感器、沸腾段后温度传感器和过热器后温度传感器获得和控制烟气温度,并对溶液泵进行双位控制或变频连续控制;冷凝水箱用于收集烟气冷却过程中析出的冷凝水,通过PH值调节系统调节冷凝水的PH值,并通过热力除氧器对冷凝水进行热力除氧,冷凝水箱的出水口通过阀门分两路,其中一路连接中水池,另一路连接燃气锅炉用于补水,所述PH值调节系统包括PH值分析仪、加药箱、加药泵和加药控制装置;中水经进口送入中水池,中水池的出水口与中水热泵的蒸发器的进水口相连,蒸发器的出水一路送入需要中水的区域,另一路与能量回收设备的的第1个节能器用热管循环冷凝器进口连接;换热设备包括板式换热器、乙二醇‑水板式换热器、取冷板式换热器;其中,板式换热器的高温侧出水口与能量回收设备的第1个节能器用热管循环冷凝器进口相连;生活热水回水或其与自来水的混合水分别进入板式换热器的低温侧、中水热泵的冷凝器、空调热泵机组的冷凝器、双工况制冷主机的生活热水冷凝器,出水混合后直接,分别与生活用水蓄水罐的进口和/或采暖系统供水总管相连;双工况制冷主机的蒸发器进水口与冷...

【技术特征摘要】

【专利技术属性】
技术研发人员:周明杨振庭于明明汪轩丁薇马青青李雪强王国荣
申请(专利权)人:北京市众诚恒祥能源投资管理有限公司
类型:新型
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1