本发明专利技术属于材料技术及纳米加工技术领域,具体为一种利用纳米压印制备带底盘金属孔洞获得全色谱结构色的方法。本发明专利技术包括:对衬底表面进行清洗和烘干处理;在衬底上旋涂光刻胶和前烘;对所述光刻胶进行纳米压印;对所述压印后的光刻胶进行紫外光固化处理;在压印后的光刻胶上淀积金属等步骤。本发明专利技术方法得到的带底盘的金属孔阵列具有可见光波段内(360纳米~810纳米)峰位可调的反常透射光谱谱峰,而体现的全色谱中单一颜色结构色,能用于CCD滤色片或彩色显示器等。
【技术实现步骤摘要】
本专利技术属于材料技术及纳米加工
,具体为一种。
技术介绍
结构色,又称物理色,是与色素着色无关、由材料本身的亚显微物理结构导致的光学效果。结构色通过材料微观结构对可见光进行选择性反射和透射而呈现特定颜色,具有高亮度、高饱和度、不褪色、虹彩现象、偏振效应等特点,在显示、装饰、防伪等方面具有广泛的应用前景。结构色起源于自然光与微结构的相互作用,成色主要包括光栅、单层膜、多层膜、光子晶体、瑞利散射、米氏散射等物理光学效应。自然界中昆虫和鸟类的多种颜色常为结构色,其外壳或羽毛中通过多层膜结构、二维光子晶体或三维光子晶体结构发生薄膜干涉、衍射、散射,从而呈现有序结构的相干散射。以上这类结构的人工制备通常包括镀膜、自组装、电子束光刻、激光干涉曝光等方法,难度相对较大,并且成本高昂但效率低下,不适合于工业生产。因此,需要开发新型的结构色制备工艺,实现成本低廉的快速生产。
技术实现思路
本专利技术的目的在于提出一种利用纳米压印制备带底盘金属孔洞,从而获得全色谱结构色的方法。本专利技术提出的,具体步骤为: (O提供衬底材料,对衬底进行表面清洗和烘干处理; (2)在衬底表面旋涂光刻胶; (3)对所述光刻胶进行前烘和纳米压印; (4)对压印后的光刻胶进行固化处理; (5)对带孔洞的光刻胶图形淀积金属。本专利技术中,所述衬底材料可为石英、玻璃等透明材料,或硅晶圆等不透明衬底材料。本专利技术中,在所述旋涂光刻胶过程中,光刻胶厚度为150纳米~1微米。本专利技术中,所述纳米压印的过程施加温度为室温~180摄氏度。本专利技术中,所述的纳米压印的过程施加压力为10~180 Bar。对压印后的光刻胶根据光刻胶特性选择固化处理的方法,包括:对光刻胶进行紫外光固化,照射时间为1~10分钟;或者,对光刻胶进行加热固化,加热温度为30~100摄氏度。对压印及固化后带孔洞的光刻胶图形淀积金属,可采用物理气相淀积(PVD)、电子束蒸发、热蒸发等方法。本专利技术的优异之处在于: 本专利技术提出一种纳米压印制备带底盘金属孔洞,从而获得全色谱结构色的方法,通过纳米压印在透明光刻胶中获得孔洞图形,并在该结构上直接淀积金属,获得孔洞底部具有底盘的金属孔洞结构,可以简单快速地获得金属结构色。本专利技术方法得到的带底盘的金属孔阵列具有可见光波段内(360纳米~810纳米)峰位可调的反常透射光谱谱峰,而体现的全色谱中单一颜色结构色,能用于CXD滤色片或彩色显示器等。【附图说明】图1是纳米压印带底盘金属孔反常透射全色谱结构色的工艺流程。图2是纳米压印和金属淀积工艺流程的示意图。图3是一种利用电子束光刻和反应离子刻蚀制备的压印模板。图4是在光刻胶中孔洞呈四方形周期排列时不同半径/周期尺寸结构在淀积60纳米厚银薄膜后反常透射显示颜色的模拟结果。图5是不同半径/周期尺寸的光刻胶压印结构在未淀积金属时反射光条件下的显微镜照片。图6是不同半径/周期尺寸的光刻胶压印结构在淀积厚度为60纳米的银金属薄膜时透射光条件下的显微镜照片。【具体实施方式】说明书中的实施例旨在提供本专利技术的示例性说明,本专利技术的实质精神并不限于此。各种采用了等效或惯用技术手段的替换方案也应该落入本专利技术的范围内。实施例1: 在该实例性实施例中:使用石英为衬底,PMMA光刻胶为纳米压印光刻胶,选用的纳米结构为一系列不同直径/周期的四方排列孔阵图形,尺寸以直径10纳米/周期20纳米为变化的100纳米/200纳米,110纳米/220纳米,…,250纳米/500纳米: (1)对石英片衬底材料进行常规清洗,并在150热板上放置5分钟烘干干燥; (2)在硅衬底表面旋涂PMMA光刻胶,旋涂转速为1500转/秒,时间为60秒,获得厚度为200纳米的光刻胶; (3)对旋涂的PMMA光刻胶在烘箱中进行前烘,其温度为180摄氏度,时间为60秒;完毕后进行纳米制备如前所述孔阵图形,压印温度为180摄氏度,压印压强为80bar,压印时间为5分钟; (4)对PMMA光刻胶无需进行特殊光刻胶固化处理; (5)对压印后的PMMA光刻胶进行银金属薄膜的热蒸发,淀积厚度为60纳米的银膜。实施例2: 在该实例性实施例中:使用石英为衬底,SU-8光刻胶为纳米压印光刻胶,选用的纳米结构为一系列不同直径/周期的四方排列孔阵图形,尺寸以直径10纳米/周期20纳米为变化的100纳米/200纳米,110纳米/220纳米,…,250纳米/500纳米: (1)对石英片衬底材料进行常规清洗,并在150热板上放置5分钟烘干干燥; (2)在硅衬底表面旋涂SU-82000.5光刻胶,旋涂转速为3000转/秒,时间为60秒,获得厚度为500纳米的光刻胶; (3)对旋涂的PMMA光刻胶在烘箱中进行前烘,其温度为150摄氏度,时间为60秒;完毕后进行纳米制备如前所述孔阵图形,压印温度为180摄氏度,压印压强为50bar,压印时间为5分钟; (4)对压印后的SU-8光刻胶进行紫外固化处理,时间为5分钟; (5)对压印后的PMMA光刻胶进行铝金属薄膜的热蒸发,淀积厚度为60纳米的铝膜。【主权项】1.一种,其特征在于具体步骤为: (1)提供衬底材料,对衬底进行表面清洗和烘干处理; (2)在衬底表面旋涂光刻胶; (3)对所述光刻胶进行前烘和纳米压印; (4)对压印后的光刻胶进行固化处理; (5)对带孔洞的光刻胶图形淀积金属。2.根据权利要求1所述的方法,其特征在于所述衬底材料为石英或玻璃,或硅晶圆。3.根据权利要求1所述的方法,其特征在于所述旋涂光刻胶厚度为150纳米~1微米。4.根据权利要求1所述的方法,其特征在于所述纳米压印的过程施加温度为室温~180摄氏度。5.根据权利要求1所述的方法,其特征在于所述的纳米压印的过程施加压力为10?180 Bar06.根据权利要求1所述的方法,其特征在于对压印后的光刻胶进行固化处理的方法,包括:对光刻胶进行紫外光固化,照射时间为1~10分钟;或者,对光刻胶进行加热固化,加热温度为30~100摄氏度。7.根据权利要求1所述的方法,其特征在于对压印及固化后带孔洞的光刻胶图形淀积金属,采用物理气相淀积、电子束蒸发或热蒸发方法。【专利摘要】本专利技术属于材料技术及纳米加工
,具体为一种。本专利技术包括:对衬底表面进行清洗和烘干处理;在衬底上旋涂光刻胶和前烘;对所述光刻胶进行纳米压印;对所述压印后的光刻胶进行紫外光固化处理;在压印后的光刻胶上淀积金属等步骤。本专利技术方法得到的带底盘的金属孔阵列具有可见光波段内(360纳米~810纳米)峰位可调的反常透射光谱谱峰,而体现的全色谱中单一颜色结构色,能用于CCD滤色片或彩色显示器等。【IPC分类】G03F7/00, G02B5/20【公开号】CN104914494【申请号】CN201510322329【专利技术人】陆冰睿, 陈宜方, 马亚琪, 张思超 【申请人】复旦大学【公开日】2015年9月16日【申请日】2015年6月13日本文档来自技高网...
【技术保护点】
一种利用纳米压印制备带底盘金属孔洞获得全色谱结构色的方法,其特征在于具体步骤为:(1)提供衬底材料,对衬底进行表面清洗和烘干处理;(2)在衬底表面旋涂光刻胶;(3)对所述光刻胶进行前烘和纳米压印;(4)对压印后的光刻胶进行固化处理;(5)对带孔洞的光刻胶图形淀积金属。
【技术特征摘要】
【专利技术属性】
技术研发人员:陆冰睿,陈宜方,马亚琪,张思超,
申请(专利权)人:复旦大学,
类型:发明
国别省市:上海;31
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。