最佳噪声系数的测试方法技术

技术编号:11391212 阅读:103 留言:0更新日期:2015-05-02 03:15
本发明专利技术公开了一种最佳噪声系数的测试方法,包括步骤:在硅片上制作测试结构一、测试结构二、测试结构三、去嵌结构和直通结构。用50欧姆系统测试测试结构一和二的不同频率下的第一和二噪声系数;对测试结构三、去嵌结构和直通结构进行测试得到第一散射参数、去嵌散射参数和直通散射参数。分别对第一、二噪声系数和第一散射参数进行去嵌得到第三、四噪声系数和第二散射系数。推导出第五噪声系数。推导出第一和二等效噪声电阻。推导出第一和二最佳源导纳。推导出最佳源电导。推导出最佳噪声系数。本发明专利技术能使用50欧姆系统进行测试并通过推算出器件的最佳噪声系数,能克服测试资源少且设备昂贵缺点,还能不会引起器件振荡。

【技术实现步骤摘要】
最佳噪声系数的测试方法
本专利技术涉及一种半导体集成电路制造工艺方法,特别是涉及一种最佳噪声系数的测试方法。
技术介绍
在射频集成电路中,如低噪声放大器,器件的噪声系数是非常重要的指标;在4个噪声参数中,最重要的参数就是最佳噪声系数,这对电路的设计、器件的选择具有指导作用。但是在测试环节,目前测试高频噪声的方法主要有两种,一种是测试50欧姆(Ohm)下的噪声系数,不是最佳噪声系数;另一种是用调谐器的方法及软件相结合的方式测试噪声参数,其中包括最佳噪声系数,这种方法目前国内测试资源少,设备价格昂贵,在片测试单管还容易引起震荡,效率低下。
技术实现思路
本专利技术所要解决的技术问题是提供一种最佳噪声系数的测试方法,能使用50欧姆系统进行测试并通过推算计算出器件的最佳噪声系数,能克服测试资源少且设备昂贵缺点、从而能降低测试成本,还能不会引起器件振荡、提高测试效率。为解决上述技术问题,本专利技术提供的最佳噪声系数的测试方法包括步骤:步骤一、在硅片上制作测试结构一、测试结构二、测试结构三、去嵌结构和直通结构。所述测试结构一包括两个GSG测试端口和一个被测试器件,所述GSG测试端口表示地-信号-地测试端口,所述被测试器件的源端和第一GSG测试端口的信号端连接,所述被测试器件的信号输出端和第二GSG测试端口的信号端连接。所述测试结构二在所述测试结构一的基础上增加了一串联电阻,所述串联电阻串联在所述被测试器件的源端和所述第一GSG测试端口的信号端之间。所述测试结构三为在所述测试结构二的基础上去除了所述被测试器件的结构,所述测试结构三的串联电阻直接串联在所述第一GSG测试端口和所述第二GSG测试端口的信号端之间。所述去嵌结构为在所述测试结构一的基础上去除了所述被测试器件以及所述被测试器件的连线的结构。所述直通结构在所述测试结构一的基础上去除了所述被测试器件,在所述直通结构的所述第一GSG测试端口和所述第二GSG测试端口的信号端之间通过一连线连接。步骤二、用50欧姆系统测试所述测试结构一的不同频率下的第一噪声系数。50欧姆系统即为源阻抗为50欧姆的噪声系数测试系统。用50欧姆系统测试所述测试结构二的不同频率下的第二噪声系数。测试所述测试结构三的不同频率下的第一散射参数。测试所述去嵌结构的不同频率下的去嵌散射参数。测试所述直通结构的不同频率下的直通散射参数。步骤三、将所述第一噪声系数结合所述去嵌散射参数和所述直通散射参数对所述第一噪声系数进行去嵌,得到所述被测试器件的去嵌后的第三噪声系数。将所述第二噪声系数结合所述去嵌散射参数和所述直通散射参数对所述第二噪声系数进行去嵌,得到所述被测试器件和所述串联电阻的去嵌后的第四噪声系数。将所述第一散射参数结合所述去嵌散射参数和所述直通散射参数对所述第一散射参数进行去嵌,得到所述串联电阻的去嵌后的第二散射参数。步骤四、由级联噪声公式:计算出F”50_2=GresF'50_2。其中,F'50_2表示所述第四噪声系数,Fres表示所述串联电阻的噪声系数,所述第二散射参数为2×2矩阵,分别为所述第二散射参数的两个元素,Fres和正好抵消;F”50_2表示第五噪声系数,所述第五噪声系数为所述第四噪声系数去掉了所述串联电阻本身产生的噪声后的噪声系数。步骤五、由公式计算出Rn_1;其中,Rn_1为第一等效噪声电阻,w表示频率,表示频率为0时的所述第三噪声系数,G0表示源阻抗为50欧姆时的源电导。由公式计算出Rn_2;其中,Rn_2为第二等效噪声电阻,表示频率为0时的所述第五噪声系数。步骤六、由公式计算得到|Yopt_1|;其中,Yopt_1表示第一最佳源导纳,slope()为斜率函数,F'50_1表示所述第三噪声系数。由公式计算得到|Yopt_2|;其中,Yopt_2表示第二最佳源导纳。步骤七、由如下两个公式:和即可计算求得Gopt;其中Gopt表示最佳源电导,Bopt表示最佳源电纳,Yres表示所述串联电阻的导纳参数,Yres由所述第二散射参数转换得到。步骤八、由公式Fmin=1+2Rn_1Gopt计算得到Fmin,Fmin表示最佳噪声系数。进一步的改进是,所述频率的范围为6GHz以下。本专利技术通过设置被测试器件、被测试器件和串联电阻以及串联电阻的测试结构和相应的去嵌结构和直通结构,能够使用50欧姆系统对被测试器件、被测试器件和串联电阻的测试结构进行噪声测试,同时利用对串联电阻测试结构和相应的去嵌结构和直通结构的散射参数的测试结果,能够通过推算计算出器件的最佳噪声系数,相对于现有技术中测试最佳噪声系数的测试资源少且价格昂贵的缺点,本专利技术能克服测试资源少且设备昂贵缺点、从而能降低测试成本,还能不会引起器件振荡、提高测试效率。附图说明下面结合附图和具体实施方式对本专利技术作进一步详细的说明:图1A是最佳噪声系数与频率的关系曲线;图1B是等效噪声电阻与频率的关系曲线;图2是二端口网络噪声的示意图;图3是本专利技术实施例方法流程图;图4A是测试结构一的结构图;图4B是测试结构二的结构图;图4C是测试结构三的结构图;图4D是去嵌结构的结构图;图4E是直通结构的结构图。具体实施方式高频噪声理论公式:F表示噪声系数,Fmin表示最佳噪声系数,Rn表示等效噪声电阻,Gs为源电导,Bs为源电纳,Gopt表示最佳源电导,Bopt表示最佳源电纳。其中,最佳噪声系数与频率呈线性关系,最佳源电纳与频率呈正比关系,等效噪声电阻和最佳源电纳不随频率变化。如图1A所示,是最佳噪声系数与频率的关系曲线,图1A中显示了测试电压分别为2.2V和3.3V的两条关系曲线;如图1B所示,是等效噪声电阻与频率的关系曲线,图1B中显示了测试电压分别为1.1V和2.2V的两条关系曲线。如图2所示,二端口网络噪声的示意图;包括源噪声101、有噪声二端口网络等效模型102,有噪声二端口网络等效模型102包括无噪声二端口网络103和电流电压噪声。对于一个二端口网络:in表示噪声电流,分解为与噪声电压vn相关和不相关的两部分ic=Ycvn和iu;定义k为波尔兹曼常数,T为温度;Yc=Gc+jBc,Ys=Gs+jBs。其中Gu为不相关电导;Yc为相关导纳,Gc为相关电导,Bc为相关电纳;is为源噪声电流,Ys为源导纳。当Bs=-Bc=Bopt,时,噪声系数F有最佳噪声系数Fmin一般情况下,当频率小于6GHz时,无相关性,此时:Fmin=1+2RnGopt当源阻抗为50欧姆时:Yopt为最佳源导纳,F50表示源阻抗为50欧姆时的噪声系数,G0为源阻抗为50欧姆时的源电导。同样当频率小于6GHz的时候:测试不同频率下的噪声系数F50,由F50与w2成正比,可以求出如下如下两个参数:1、当w=0的时候,可以求出Rn,表示源阻抗为50欧姆、频率为0时的噪声系数,w表示频率。2、可以求出:为斜率函数,slope(F50)表示F50的与频率关系的斜率。另外根据导纳和电导、电纳的关系可知,在求出Yopt后,显然不能得到Gopt的值;要求出Gopt,需要有两组|Yopt|方程。通过两组方程就可以求出Gopt,并根据公式Fmin=1+2RnGopt,可以求出Fmin。本专利技术实施例中就是通过再设计一个器件,在二端口源端串联一个电阻,然后通过测试带有电阻的结构,经过噪声去嵌后可以得到一本文档来自技高网...
最佳噪声系数的测试方法

【技术保护点】
一种最佳噪声系数的测试方法,其特征在于,包括步骤:步骤一、在硅片上制作测试结构一、测试结构二、测试结构三、去嵌结构和直通结构;所述测试结构一包括两个GSG测试端口和一个被测试器件,所述GSG测试端口表示地‑信号‑地测试端口,所述被测试器件的源端和第一GSG测试端口的信号端连接,所述被测试器件的信号输出端和第二GSG测试端口的信号端连接;所述测试结构二在所述测试结构一的基础上增加了一串联电阻,所述串联电阻串联在所述被测试器件的源端和所述第一GSG测试端口的信号端之间;所述测试结构三为在所述测试结构二的基础上去除了所述被测试器件的结构,所述测试结构三的串联电阻直接串联在所述第一GSG测试端口和所述第二GSG测试端口的信号端之间;所述去嵌结构为在所述测试结构一的基础上去除了所述被测试器件以及所述被测试器件的连线的结构;所述直通结构在所述测试结构一的基础上去除了所述被测试器件,在所述直通结构的所述第一GSG测试端口和所述第二GSG测试端口的信号端之间通过一连线连接;步骤二、用50欧姆系统测试所述测试结构一的不同频率下的第一噪声系数;用50欧姆系统测试所述测试结构二的不同频率下的第二噪声系数;测试所述测试结构三的不同频率下的第一散射参数;测试所述去嵌结构的不同频率下的去嵌散射参数;测试所述直通结构的不同频率下的直通散射参数;步骤三、将所述第一噪声系数结合所述去嵌散射参数和所述直通散射参数对所述第一噪声系数进行去嵌,得到所述被测试器件的去嵌后的第三噪声系数;将所述第二噪声系数结合所述去嵌散射参数和所述直通散射参数对所述第二噪声系数进行去嵌,得到所述被测试器件和所述串联电阻的去嵌后的第四噪声系数;将所述第一散射参数结合所述去嵌散射参数和所述直通散射参数对所述第一散射参数进行去嵌,得到所述串联电阻的去嵌后的第二散射参数;步骤四、由级联噪声公式:F′50_2=Fres+F′′50_2-1Gres,]]>计算出F''50_2=GresF'50_2;其中,F'50_2表示所述第四噪声系数,Fres表示所述串联电阻的噪声系数,所述第二散射参数为2×2矩阵,分别为所述第二散射参数的两个元素,Fres和正好抵消;F''50_2表示第五噪声系数,所述第五噪声系数为所述第四噪声系数去掉了所述串联电阻本身产生的噪声后的噪声系数;步骤五、由公式计算出Rn_1;其中,Rn_1为第一等效噪声电阻,w表示频率,表示频率为0时的所述第三噪声系数,G0表示源阻抗为50欧姆时的源电导;由公式计算出Rn_2;其中,Rn_2为第二等效噪声电阻,表示频率为0时的所述第五噪声系数;步骤六、由公式计算得到|Yopt_1|;其中,Yopt_1表示第一最佳源导纳,slope()为斜率函数,F'50_1表示所述第三噪声系数;由公式计算得到|Yopt_2|;其中,Yopt_2表示第二最佳源导纳;步骤七、由如下两个公式:|Yopt_1|=(Gopt2+Bopt2)]]>和|Yopt_2|=[real(Yres)+Gopt]2+[imag(Yres)+Bopt]2]]>即可计算求得Gopt;其中Gopt表示最佳源电导,Bopt表示最佳源电纳,Yres表示所述串联电阻的导纳参数,Yres由所述第二散射参数转换得到;步骤八、由公式Fmin=1+2Rn_1Gopt计算得到Fmin,Fmin表示最佳噪声系数。...

【技术特征摘要】
1.一种最佳噪声系数的测试方法,其特征在于,包括步骤:步骤一、在硅片上制作测试结构一、测试结构二、测试结构三、去嵌结构和直通结构;所述测试结构一包括两个GSG测试端口和一个被测试器件,所述GSG测试端口表示地-信号-地测试端口,所述被测试器件的源端和第一GSG测试端口的信号端连接,所述被测试器件的信号输出端和第二GSG测试端口的信号端连接;所述测试结构二在所述测试结构一的基础上增加了一串联电阻,所述串联电阻串联在所述被测试器件的源端和所述第一GSG测试端口的信号端之间;所述测试结构三为在所述测试结构二的基础上去除了所述被测试器件的结构,所述测试结构三的串联电阻直接串联在所述第一GSG测试端口和所述第二GSG测试端口的信号端之间;所述去嵌结构为在所述测试结构一的基础上去除了所述被测试器件以及所述被测试器件的连线的结构;所述直通结构在所述测试结构一的基础上去除了所述被测试器件,在所述直通结构的所述第一GSG测试端口和所述第二GSG测试端口的信号端之间通过一连线连接;步骤二、用50欧姆系统测试所述测试结构一的不同频率下的第一噪声系数;用50欧姆系统测试所述测试结构二的不同频率下的第二噪声系数;测试所述测试结构三的不同频率下的第一散射参数;测试所述去嵌结构的不同频率下的去嵌散射参数;测试所述直通结构的不同频率下的直通散射参数;步骤三、将所述第一噪声系数结合所述去嵌散射参数和所述直通散射参数对所述第一噪声系数进行去嵌,得到所述被测试器件的去嵌后的第三噪声系数;将所述第二噪声系数结合所述去嵌散射参数和所述直通散射参数对所述第二噪声系数进行去嵌,得到所述被测试器件和所述串联电阻的去嵌后的第四噪声系数;将所述第一散射参数结合所述去嵌散射参数和所述直通散射参数对所述第一散射参...

【专利技术属性】
技术研发人员:黄景丰
申请(专利权)人:上海华虹宏力半导体制造有限公司
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1