天然气水合物地层钻井模拟装置制造方法及图纸

技术编号:11271316 阅读:77 留言:0更新日期:2015-04-08 18:26
本发明专利技术公开了一种天然气水合物地层钻井模拟装置,包括水合物岩心模拟系统、钻进系统、钻井液注入系统、钻井液处理系统;其中:所述水合物岩心模拟系统包括水合物地层模拟井筒、人造岩心、水浴夹套、低温水浴;所述钻井系统包括支架、高压转联装置、液压装置、钻进装置,所述钻井液注入系统包括泥浆罐、钻井液流量计、泥浆泵、溢流阀;所述钻井液处理系统包括高压除砂器、背压及溢流控制系统、气液分离器、干燥器、气体流量计、液体流量计、泥浆处理池。本发明专利技术所述模拟装置可以对多种井下工况环境进行相关模拟试验,具有操作便捷和结构简单的特点,从而为评估天然气水合物钻井安全控制、钻井方案制定提供室内试验数据。

【技术实现步骤摘要】
天然气水合物地层钻井模拟装置
本专利技术涉及一种钻井模拟装置,特别是涉及一种模拟不同工况下天然气水合物地层钻井过程的实验模拟装置。
技术介绍
天然气水合物(NaturalGasHydrate,NGH)具有储量大、分布广、能量密度高、清洁环保等优点,被认为是21世纪最重要的清洁替代能源,展开NGH研究具有重大的科学和现实意义。NGH研究包括资源调查与评价、开采技术、安全与环境影响等方面。在资源调查研究的基础上,经济、高效和安全的NGH开采技术是实现NGH资源开发的决定性因素。NGH开采技术研究涉及的内容主要有钻井、分解、采气、环境影响等。其中NGH钻井技术是实现NGH开采的基础和前提。目前,有关NGH钻井方面的模拟研究报道极少。虽然已开展了一定的冻土区及海洋NGH现场勘探取样钻井和少量的试开采钻井工作,但NGH勘探取样钻井和生产性开采钻井存在较大的区别,因此,开展NGH开采钻井技术研究对NGH资源开发利用至关重要。由于天然气水合物是一种受环境约束非常强的物质,它的形成和稳定需要非常特殊的高压低温环境,在进行NGH钻井过程中,钻头切削岩石的过程、井底钻具与井壁和岩心的摩擦会产生大量的热能,以及井壁和井底附近地层应力释放,这些都会造成NGH的分解产生气体和分解水。NGH的分解会对钻井质量、钻井速度、设备等造成严重危害。一方面,气体进入钻井液后,与钻井液一起循环,使钻井液密度降低,导致井底静水压力降低,加速了NGH的分解,并表现为恶性循环,最终导致井底大量水合物分解,造成井径严重扩大、井喷、井塌、套管变形及地面沉降等事故。另一方面,在深海和温度很低冻土地区钻井时,在井身内一定位置或地面管路中具有气体重新形成NGH的温度和压力条件,这样,在钻井液中就很可能形成NGH,而这就会造成钻井液循环(类似于油气输送管道中形成的天然气水合物堵塞)或钻井系统的其他管路的堵塞,从而导致一系列井内恶性事故。因此,能否控制钻井过程中井底热(温度)、压力和NGH分解,是关系到NGH资源开发利用的关键性问题。此外,由于海底NGH均赋存于浅层沉积物中,水合物储层地质力学性能弱,破裂压力低,若采用太高的钻井压力则会导致地层破裂,造成钻井液漏失。因此,NGH钻井与常规的油气开采钻井相比,在钻井速度,钻井液配比、压力变化及循环流速,井底压力控制方法等方面有很大的不同。在没有研究建立成熟系统的NGH地层钻井理论和相关技术之前,如贸然采用常规油气开采钻井技术进行钻井,可能会引发难以预测和控制的安全事故。NGH开采钻井研究方法可分为实验室模拟、数值模拟和现场试验三类,其中,现场试验耗资巨大,成本高昂,且只适合于已发现NGH实物样品的国家;数值模拟虽然成本低,但必须有实验模拟所获得基础数据及基本规律为基础;而实验模拟是通过在实验室建立实验模拟仪器及设备,通过控制模拟设备的温度、压力及介质等条件来近似模拟自然界NGH藏环境,并研究其生成、钻井过程的规律和影响机制。由于实验模拟研究成本较低,且是其它研究的基础,因此,NGH钻井实验模拟研究就成为当前NGH钻井技术研究最为可行的研究方法。目前制约NGH钻井实验模拟研究发展的瓶颈问题在于缺乏在高压低温下实时、原位、快速、精确测定钻井过程中NGH相态变化及赋存特征的探测方法和实验仪器,这主要是由于NGH地层条件(高压、低温)苛刻、实验介质复杂,导致现有的油气钻井模拟装置与探测仪器不能应用于NGH钻井模拟研究,必须重新设计制造,使其既耐高压又有高的测试精度。
技术实现思路
基于此,有必要针对现有技术对天然气水合物钻井模拟过程存在的问题,提供一种天然气水合物钻井模拟研究模拟装置,可以实现低温高压下天然气水合物地层钻井过程模拟,进行不同地层条件与工况条件下的钻井实验与钻井参数测定,从而对钻头、钻压、转速以及钻井液类型优选,对钻井过程风险进行评估与控制。一种天然气水合物地层钻井模拟装置,包括水合物岩心模拟系统、钻井系统、钻井液注入系统、钻井液处理系统;其中:所述水合物岩心模拟系统包括水合物地层模拟井筒、人造岩心、水浴夹套、低温水浴;所述人造岩心填充于水合物地层模拟井筒的内腔中,所述水浴夹套包裹在水合物地层模拟井筒的外侧,低温水浴与水浴夹套连接,用于控制水合物地层模拟井筒内部环境的温度;所述钻井系统包括支架、高压转联装置、液压装置、钻进装置,其中,所述高压转联装置为固定安装于水合物地层模拟井筒上侧的中空结构,该中空结构与水合物地层模拟井筒的内腔相连通;所述支架包括底座、立柱、井筒固定支架、转联器固定支架、电机平台,所述立柱安装在底座的一侧,井筒固定支架、转联器固定支架以及电机平台的一侧均固定连接在立柱上,它们的另一侧分别与水合物地层模拟井筒、高压转联装置以及钻进装置固定连接,所述钻进装置包括钻杆,所述钻杆伸入高压转联装置的中空结构中并延伸至水合物地层模拟井筒的内腔;所述液压装置与钻杆连接,用于为钻杆提供所需的下压力;所述钻井液注入系统包括泥浆罐、泥浆冷却装置、搅拌装置、第一泥浆泵、加热器、第二泥浆泵、钻井液流量计、溢流阀。第一泥浆泵和第二泥浆泵的入口管线均与泥浆罐连接,第一泥浆泵的出口管线与加热器相连,第二泥浆泵出口管线与加热器出口管线通过三通接头汇合,三通接头出口设有温度传感器用于测量泥浆温度。混合后的泥浆连接后通过三通接头分成两路,一路通过管路经钻井液流量计与泥浆入口相连,一路通过溢流阀与泥浆罐相连。所述泥浆罐带有泥浆冷却装置、搅拌装置。实验时首先启动第二泥浆泵,提供输入泥浆压力和泥浆流量两个参数;其次调节溢流阀开度,控制模拟井底压力值。钻井液通过泥浆泵注入到钻杆中,经由单向阀从钻头流出,从钻杆与井眼间的环空由泥浆出口流出。实验过程中,利用第二泥浆泵与溢流阀控制泥浆流量,通过低速流量泵与加热器控制泥浆温度。所述钻井液处理系统包括高压除砂器、背压及溢流控制系统、气液分离器、气体流量计、液体流量计;所述高压除砂器的入口通过管路与高压转联装置上设置的泥浆出口相连,高压除砂器的出口经背压及溢流控制系统与气液分离器相连,气液分离器流出的气体通过气体流量计计量,气液分离器流出的液体返回到泥浆罐中。所述水合物地层模拟井筒的内腔为180mm×180mm×180mm的立方体,其耐压范围为0~30MPa。所述水合物地层模拟井筒包括筒体、上法兰、和下法兰,所述上法兰、和下法兰分别固定于筒体的上、下两侧;高压转联装置与上法兰固定,所述下法兰和上法兰上分别设置有与水合物地层模拟井筒内腔相连通的气液入口和气液出口。气液入口可外接注气注液设备与抽真空装置。下法兰同时设有温度压力测量接口、应力测量接口。所述的液压装置由油箱、液压油缸和液压泵组成,液压泵一端通过油管和油箱连接,另一端与液压油缸相连接,液压油缸提供钻井所需的下压力。所述钻进装置进一步包括伺服电机、第一齿轮、第二齿轮、钻头,伺服电机安装在电机平台上,伺服电机的旋转轴连接第一齿轮,与第一齿轮相啮合的第二齿轮固定套接于钻杆上;钻杆的输出端与钻头连接,钻杆为空腔结构,在所述空腔中安装有单向阀,钻杆的外径小于高压转联装置中空结构的内径,钻杆的表面开孔用于钻井液通过泥浆入口注入钻杆的空腔内。所述钻头在人造岩心中的最大钻进距离为150mm,钻头的直径为25mm,钻杆的直径为16mm。所述高压转本文档来自技高网
...
天然气水合物地层钻井模拟装置

【技术保护点】
一种天然气水合物地层钻井模拟装置,其特征在于,包括水合物岩心模拟系统、钻进系统、钻井液注入系统、钻井液处理系统;其中:所述水合物岩心模拟系统包括水合物地层模拟井筒(1)、人造岩心(35)、水浴夹套(30)、低温水浴(27);所述人造岩心(35)填充于水合物地层模拟井筒(1)的内腔中,所述水浴夹套(30)包裹在水合物地层模拟井筒(1)的外侧,低温水浴(27)与水浴夹套(30)连接,用于控制水合物地层模拟井筒(1)内部环境的温度;所述钻井系统包括支架、高压转联装置(2)、液压装置、钻进装置,其中,所述高压转联装置(2)为固定安装于水合物地层模拟井筒(1)上侧的中空结构,该中空结构与水合物地层模拟井筒(1)的内腔相连通;所述支架包括底座(4)、立柱(3)、井筒固定支架(5)、转联器固定支架(6)、电机平台(7),所述立柱(3)安装在底座(4)的一侧,井筒固定支架(5)、转联器固定支架(6)以及电机平台(7)的一侧均固定连接在立柱(3)上,它们的另一侧分别与水合物地层模拟井筒(1)、高压转联装置(2)以及钻进装置固定连接,所述钻进装置包括钻杆(46),所述钻杆(46)伸入高压转联装置(2)的中空结构中并延伸至水合物地层模拟井筒(1)的内腔;所述液压装置与钻杆(46)连接,用于为钻杆(46)提供所需的下压力;所述钻井液注入系统包括泥浆罐(14)、泥浆冷却装置(15)、搅拌装置(16)、第一泥浆泵(17)、加热器(18)、第二泥浆泵(19)、钻井液流量计(20)、溢流阀(21);第一泥浆泵(17)和第二泥浆泵(19)的入口管线均与泥浆罐(14)连接,第一泥浆泵(17)的出口管线与加热器(18)的入口管线相连,第二泥浆泵(19)出口管线与加热器(18)出口管线通过三通接头汇合,三通接头出口设有温度传感器用于测量泥浆温度;混合后的泥浆连接后通过三通接头分成两路,一路通过管路经钻井液流量计(20)与泥浆入口(44)相连,一路通过溢流阀(21)与泥浆罐(14)相连,泥浆冷却装置(15)、搅拌装置(16)设置于泥浆罐(14)中;所述钻井液处理系统包括高压除砂器(22)、背压及溢流控制系统(23)、气液分离器(24)、液体流量计(25)、气体流量计(26);所述高压除砂器(22)的入口通过管路与高压转联装置(2)上设置的泥浆出口(45)相连,高压除砂器(22)的出口经背压及溢流控制系统(23)与气液分离器(24)相连,气液 分离器(24)流出的气体通过气体流量计(26)计量,气液分离器(24)流出的液体经过液体流量计(25)返回到泥浆罐(14)中。...

【技术特征摘要】
1.一种天然气水合物地层钻井模拟装置,其特征在于,包括水合物岩心模拟系统、钻井系统、钻井液注入系统、钻井液处理系统;其中:所述水合物岩心模拟系统包括水合物地层模拟井筒(1)、人造岩心(35)、水浴夹套(30)、低温水浴(27);所述人造岩心(35)填充于水合物地层模拟井筒(1)的内腔中,所述水浴夹套(30)包裹在水合物地层模拟井筒(1)的外侧,低温水浴(27)与水浴夹套(30)连接,用于控制水合物地层模拟井筒(1)内部环境的温度;所述钻井系统包括支架、高压转联装置(2)、液压装置、钻进装置,其中,所述高压转联装置(2)为固定安装于水合物地层模拟井筒(1)上侧的中空结构,该中空结构与水合物地层模拟井筒(1)的内腔相连通;所述支架包括底座(4)、立柱(3)、井筒固定支架(5)、转联器固定支架(6)、电机平台(7),所述立柱(3)安装在底座(4)的一侧,井筒固定支架(5)、转联器固定支架(6)以及电机平台(7)的一侧均固定连接在立柱(3)上,它们的另一侧分别与水合物地层模拟井筒(1)、高压转联装置(2)以及钻进装置固定连接,所述钻进装置包括钻杆(46),所述钻杆(46)伸入高压转联装置(2)的中空结构中并延伸至水合物地层模拟井筒(1)的内腔;所述液压装置与钻杆(46)连接,用于为钻杆(46)提供所需的下压力;所述钻井液注入系统包括泥浆罐(14)、泥浆冷却装置(15)、搅拌装置(16)、第一泥浆泵(17)、加热器(18)、第二泥浆泵(19)、钻井液流量计(20)、溢流阀(21);第一泥浆泵(17)和第二泥浆泵(19)的入口管线均与泥浆罐(14)连接,第一泥浆泵(17)的出口管线与加热器(18)的入口管线相连,第二泥浆泵(19)出口管线与加热器(18)出口管线通过三通接头汇合,三通接头出口设有温度传感器用于测量泥浆温度;混合后的泥浆连接后通过三通接头分成两路,一路通过管路经钻井液流量计(20)与泥浆入口(44)相连,一路通过溢流阀(21)与泥浆罐(14)相连,泥浆冷却装置(15)、搅拌装置(16)设置于泥浆罐(14)中;所述钻井液处理系统包括高压除砂器(22)、背压及溢流控制系统(23)、气液分离器(24)、液体流量计(25)、气体流量计(26);所述高压除砂器(22)的入口通过管路与高压转联装置(2)上设置的泥浆出口(45)相连,高压除砂器(22)的出口经背压及溢流控制系统(23)与气液分离器(24)相连,气液分离器(24)流出的气体通过气体流量计(26)计量,气液分离器(24)流出的液体经过液体流量计(25)返回到泥浆罐(14)中。2.根据权利要求1所述的天然气水合物地层钻井模拟装置,其特征在于,所述水合物地层模拟井筒(1)的内腔为180mm×180mm×180mm的立方体,其耐压范围为0~30MPa。3.根据权利要求2所述的天然气水合物地层钻井模拟装置,其特征在于,所述水合物地层模拟井筒(1)包括筒体(32)、上法兰(31)、和下法兰(33),所述上法兰(31)、和下法兰(33)分别固定于筒体(32)的上、下两侧;高压转联装置(2)与上法兰(31)固定,所述下法兰(33)和上法兰(31)上分别设置有与水合物地层模拟井筒(1)内腔相连通的气...

【专利技术属性】
技术研发人员:李小森张郁王屹李刚陈朝阳黄宁生
申请(专利权)人:中国科学院广州能源研究所
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1