一种粒子冲击钻井用注入装置制造方法及图纸

技术编号:15428560 阅读:139 留言:0更新日期:2017-05-25 15:41
本发明专利技术涉及一种粒子冲击钻井用注入装置,其技术方案是包括粒子举升灌装系统、压力补偿系统、双罐注入系统、防堵混合系统和电路控制系统,属于石油钻井工程技术领域,适用于粒子冲击钻井中粒子的连续注入,压力补偿系统可将粒子注入罐中的压力预先升至工作压力;双罐注入系统由可交替使用的双罐并联,保证粒子连续注入;防堵混合系统在避免粒子堵塞的同时,可使粒子可控可调的注入混合腔,与钻井液充分混合。本发明专利技术可实现粒子冲击钻井时粒子的连续注入,可长时间连续工作,保证了粒子浓度可控可调,避免了粒子堵塞事故的发生,且粒子与钻井液混合均匀;结构合理紧凑,使用安全可靠,可大幅缩短钻井周期。

【技术实现步骤摘要】
一种粒子冲击钻井用注入装置
本专利技术涉及一种石油工程技术,特别涉及一种粒子冲击钻井用注入装置。
技术介绍
粒子冲击钻井技术是提高深井/超深井及硬地层钻井速度的有效途径之一,而粒子注入装置是粒子冲击钻井技术实现的前提和关键,从根本上讲,粒子注入装置研究的核心是如何将钢质粒子以一定的速率,连续地注入到高压钻井液中。目前,国内外已有的粒子注入装置尚不能真正的实现粒子的连续注入,即使采用双注入管注入装置,应用中也存在着明显的弊病。在两管交替时,低压管有一个升压过程,当刚接通低压管时,因压力大幅下降而无法正常进行喷射作业,而低压管压力升至稳定工作压力需要一段时间,使喷射作业存在间断,不能保证粒子冲击钻井系统始终连续地工作。当系统正常工作时,高压罐中的粒子以一定的速度自下料管进入混合腔,当粒子截止阀突然关闭时,由于惯性的作用,粒子仍然下落,导致粒子在下料管中压实,之后,系统的压力降低,由于容积效应,高压罐和其内部的水恢复弹性变形,即高压罐体积收缩而水的体积膨胀,使得整个高压罐的空间减小,导致下料管中粒子持续压实,最终导致下料管的严重堵塞,且固体粒子自身流动性不良,很容易发生粒子出料口堵塞的事故,且解堵困难。所以,在系统停止工作时,应及时将高压罐中的压力卸掉,避免产生容积效应,而安装泄压阀是不可取的,这样不仅造成操作的不便,而且使得高压罐在释放数十兆帕压力时产生事故隐患。在粒子冲击钻井过程中,要求粒子必须以固定的体积比例均匀的注入高压主管汇,且粒子的浓度能够连续可调,常用的螺杆挤压式注入方式因螺杆挤压器的密封性较差,且磨损严重,而限制了其推广应用。上述局面严重制约了粒子冲击钻井技术的商业化进程,粒子注入装置存在的问题急需解决。
技术实现思路
本专利技术的目的就是针对现有技术存在的上述缺陷,提供一种粒子冲击钻井用注入装置,通过设计粒子举升灌装系统、压力补偿系统、双罐注入系统和防堵混合系统,真正实现粒子连续注入、防堵且粒子浓度连续可调的目的,并通过电路控制系统实现操作的远程控制,解决现有技术中存在的问题。本专利技术提到的一种粒子冲击钻井用注入装置,包括粒子举升灌装系统(1)、压力补偿系统(2)、双罐注入系统(3)、防堵混合系统(4)和电路控制系统(5),粒子举升灌装系统(1)与双罐注入系统(3)的入口连接,且双罐注入系统(3)的侧壁连通压力补偿系统(2),在双罐注入系统(3)的底部连接防堵混合系统(4),一侧安设电路控制系统(5);所述的粒子举升灌装系统(1)将粒子举升至双罐注入系统(3)中;所述的压力补偿系统可对双罐注入系统(3)的粒子注入罐(3-1)预升压至工作压力,并完成粒子与钻井液的初级混合;所述的双罐注入系统(3)可通过两个粒子注入罐的交替使用将粒子连续的注入到高压管汇中;所述的防堵混合系统(4)可防止堵塞事故的发生,实现粒子浓度的可控可调,并完成粒子与钻井液的两级混合;所述的电路控制系统(5)可实现操作的远程控制。上述的粒子举升灌装系统(1)包括储料箱(1-1)、垂直螺旋输送机(1-2)、电机(1-3)、料斗(1-4)和粒子灌装阀(1-5);垂直螺旋输送机(1-2)在顶部电机(1-3)的带动下,将储料箱(1-1)中的粒子举升到设备的最高处,灌入到料斗(1-4)中;通过启闭粒子灌装阀(1-5),将粒子注入左右两个粒子注入罐(3-1)中。上述的压力补偿系统(2)包括升压管线(2-1)、升压用泥浆阀(2-2);所述的升压管线(2-1)为高压主管线的一个分支,通过打开升压用泥浆阀(2-2)向粒子注入罐(3-1)内输入高压钻井液,将粒子注入罐(3-1)升压至工作压力,完成预升压过程,并完成粒子与钻井液的初级混合,形成粒子混浆,避免粒子注入罐(3-1)接通高压管汇后升压出现压力下降和管汇中粒子间断现象的发生。上述的双罐注入系统(3)包括粒子注入罐(3-1)和粒子截止阀(3-2);所述的粒子注入罐为左右并联的双罐,将罐中粒子通过压差引射的方式注入到连接高压主管汇的混合腔(4-1-4)中;所述的粒子截止阀(3-2)通过粒子截止阀本体(3-2-2)在90°内旋转,使得圆柱孔(3-2-1)与下料管(4-1-3)正对或正交启闭粒子注入混合腔(4-1-4)的过程。上述的防堵混合系统(4)包括引射器(4-1)和防堵喷头(4-2);引射器(4-1)位于粒子注入罐(3-1)的底部,包括两向阀(4-1-1)、粒子浓度调节机构(4-1-2)、下料管(4-1-3)和混合腔(4-1-4),粒子混浆通过下料管(4-1-3)和粒子截止阀的圆柱孔(3-2-1)注入混合腔(4-1-4)中;两向阀(4-1-1)包括阀门体(4-1-1-1)、单向开关(4-1-1-2)和拉伸弹簧(4-1-1-3),当粒子注入罐(3-1)中的压力低于高压主管汇的压力时,两向阀(4-1-1)在压差的作用下向上运动,平衡两者的压力,在粒子连续注入装置停止工作后,粒子注入罐(3-1)中的压力高于高压主管汇的压力,单向开关(4-1-1-2)向下运动,对粒子注入罐自动泄压,设置阶梯孔防止拉伸弹簧(4-1-1-3)被过渡拉伸,泄压后,在拉伸弹簧的作用下,单向开关回位。上述的粒子浓度调节机构(4-1-2)包括外部大齿轮(4-1-2-1)、第一外部小齿轮(4-1-2-2)和第二外部小齿轮(4-1-2-3)、第一内部小齿轮(4-1-2-4)和第二内部小齿轮(4-1-2-5)、第一齿条(4-1-2-6)和第二齿条(4-1-2-7)以及第一半圆球形阀(4-1-2-8)和第二半圆球形阀(4-1-2-9),外部大齿轮(4-1-2-1)与第一外部小齿轮(4-1-2-2)和第二外部小齿轮(4-1-2-3)啮合,旋转外部大齿轮(4-1-2-1),同时带动第一外部小齿轮(4-1-2-2)和第二外部小齿轮(4-1-2-3)转动,第一内部小齿轮(4-1-2-4)和第二内部小齿轮(4-1-2-5)分别与第一外部小齿轮(4-1-2-2)和第二外部小齿轮(4-1-2-3)同轴转动,第一内部小齿轮(4-1-2-4)和第二内部小齿轮(4-1-2-5)分别与第一齿条(4-1-2-6)和第二齿条(4-1-2-7)啮合,从而带动第一齿条(4-1-2-6)和第二齿条(4-1-2-7)在竖直方向异向运动;第一齿条(4-1-2-6)和第二齿条(4-1-2-7)下端为第一半圆球形阀(4-1-2-8)和第二半圆球形阀(4-1-2-9),通过第一齿条(4-1-2-6)和第二齿条(4-1-2-7)的异向运动,第一半圆球形阀(4-1-2-8)和第二半圆球形阀(4-1-2-9)的间距增大或者缩小,从而调节了孔口的开启度。上述的防堵喷头(4-2)包括顶部尖帽(4-2-1)、防堵喷嘴(4-2-2)和滤砂网(4-2-3),底部车有螺纹,可方便的旋拧在粒子注入罐(3-1)底部;顶部尖帽(4-2-1)可减少粒子的堆积对防堵喷头产生的压实作用;所述的防堵喷嘴(4-2-2)前后、左右对称布置在防堵喷头本体上,喷嘴向下倾斜20°,每列4个;滤砂网(4-2-3)是不锈钢丝编织平纹编织网或斜纹编织网,基本孔径0.5mm。本专利技术提到的一种粒子冲击钻井用注入装置的注入方法,具体的操作步骤如下:第一步:打开垂直螺旋输送机(1-2)顶部的电机(1-3),将粒子从储料箱(1-本文档来自技高网
...
一种粒子冲击钻井用注入装置

【技术保护点】
一种粒子冲击钻井用注入装置,其特征是包括粒子举升灌装系统(1)、压力补偿系统(2)、双罐注入系统(3)、防堵混合系统(4)和电路控制系统(5),粒子举升灌装系统(1)与双罐注入系统(3)的入口连接,且双罐注入系统(3)的侧壁连通压力补偿系统(2),在双罐注入系统(3)的底部连接防堵混合系统(4),一侧安设电路控制系统(5);所述的粒子举升灌装系统(1)将粒子举升至双罐注入系统(3)中;所述的压力补偿系统可对双罐注入系统(3)的粒子注入罐(3‑1)预升压至工作压力,并完成粒子与钻井液的初级混合;所述的双罐注入系统(3)可通过两个粒子注入罐的交替使用将粒子连续的注入到高压管汇中;所述的防堵混合系统(4)可防止堵塞事故的发生,实现粒子浓度的可控可调,并完成粒子与钻井液的两级混合;所述的电路控制系统(5)可实现操作的远程控制;所述的双罐注入系统(3)包括粒子注入罐(3‑1)和粒子截止阀(3‑2);所述的粒子注入罐为左右并联的双罐,将罐中粒子通过压差引射的方式注入到连接高压主管汇的混合腔(4‑1‑4)中;所述的粒子截止阀(3‑2)通过粒子截止阀本体(3‑2‑2)在90°内旋转,使得圆柱孔(3‑2‑1)与下料管(4‑1‑3)正对或正交启闭粒子注入混合腔(4‑1‑4)的过程;所述的粒子浓度调节机构(4‑1‑2)包括外部大齿轮(4‑1‑2‑1)、第一外部小齿轮(4‑1‑2‑2)和第二外部小齿轮(4‑1‑2‑3)、第一内部小齿轮(4‑1‑2‑4)和第二内部小齿轮(4‑1‑2‑5)、第一齿条(4‑1‑2‑6)和第二齿条(4‑1‑2‑7)以及第一半圆球形阀(4‑1‑2‑8)和第二半圆球形阀(4‑1‑2‑9),外部大齿轮(4‑1‑2‑1)与第一外部小齿轮(4‑1‑2‑2)和第二外部小齿轮(4‑1‑2‑3)啮合,旋转外部大齿轮(4‑1‑2‑1),同时带动第一外部小齿轮(4‑1‑2‑2)和第二外部小齿轮(4‑1‑2‑3)转动,第一内部小齿轮(4‑1‑2‑4)和第二内部小齿轮(4‑1‑2‑5)分别与第一外部小齿轮(4‑1‑2‑2)和第二外部小齿轮(4‑1‑2‑3)同轴转动,第一内部小齿轮(4‑1‑2‑4)和第二内部小齿轮(4‑1‑2‑5)分别与第一齿条(4‑1‑2‑6)和第二齿条(4‑1‑2‑7)啮合,从而带动第一齿条(4‑1‑2‑6)和第二齿条(4‑1‑2‑7)在竖直方向异向运动;第一齿条(4‑1‑2‑6)和第二齿条(4‑1‑2‑7)下端为第一半圆球形阀(4‑1‑2‑8)和第二半圆球形阀(4‑1‑2‑9),通过第一齿条(4‑1‑2‑6)和第二齿条(4‑1‑2‑7)的异向运动,第一半圆球形阀(4‑1‑2‑8)和第二半圆球形阀(4‑1‑2‑9)的间距增大或者缩小,从而调节了孔口的开启度。...

【技术特征摘要】
1.一种粒子冲击钻井用注入装置,其特征是包括粒子举升灌装系统(1)、压力补偿系统(2)、双罐注入系统(3)、防堵混合系统(4)和电路控制系统(5),粒子举升灌装系统(1)与双罐注入系统(3)的入口连接,且双罐注入系统(3)的侧壁连通压力补偿系统(2),在双罐注入系统(3)的底部连接防堵混合系统(4),一侧安设电路控制系统(5);所述的粒子举升灌装系统(1)将粒子举升至双罐注入系统(3)中;所述的压力补偿系统可对双罐注入系统(3)的粒子注入罐(3-1)预升压至工作压力,并完成粒子与钻井液的初级混合;所述的双罐注入系统(3)可通过两个粒子注入罐的交替使用将粒子连续的注入到高压管汇中;所述的防堵混合系统(4)可防止堵塞事故的发生,实现粒子浓度的可控可调,并完成粒子与钻井液的两级混合;所述的电路控制系统(5)可实现操作的远程控制;所述的双罐注入系统(3)包括粒子注入罐(3-1)和粒子截止阀(3-2);所述的粒子注入罐为左右并联的双罐,将罐中粒子通过压差引射的方式注入到连接高压主管汇的混合腔(4-1-4)中;所述的粒子截止阀(3-2)通过粒子截止阀本体(3-2-2)在90°内旋转,使得圆柱孔(3-2-1)与下料管(4-1-3)正对或正交启闭粒子注入混合腔(4-1-4)的过程;所述的粒子浓度调节机构(4-1-2)包括外部大齿轮(4-1-2-1)、第一外部小齿轮(4-1-2-2)和第二外部小齿轮(4-1-2-3)、第一内部小齿轮(4-1-2-4)和第二内部小齿轮(4-1-2-5)、第一齿条(4-1-2-6)和第二齿条(4-1-2-7)以及第一半圆球形阀(4-1-2-8)和第二半圆球形阀(4-1-2-9),外部大齿轮(4-1-2-1)与第一外部小齿轮(4-1-2-2)和第二外部小齿轮(4-1-2-3)啮合,旋转外部大齿轮(4-1-2-1),同时带...

【专利技术属性】
技术研发人员:不公告发明人
申请(专利权)人:中国石油大学华东
类型:发明
国别省市:山东,37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1