全固态钙钛矿微晶硅复合太阳电池及其制备方法技术

技术编号:11062319 阅读:91 留言:0更新日期:2015-02-19 09:20
本发明专利技术全固态钙钛矿微晶硅复合太阳电池及其制备方法,涉及专门适用于将光能转换为电能的半导体器件,由透明导电基底、氧化物半导体薄膜层、钙钛矿光吸收层、微晶硅空穴传输层和背电极构成;在涂覆了氧化物半导体薄膜的透明导电基底上制备钙钛矿光吸收层,微晶硅空穴传输层沉积在钙钛矿光吸收层上形成全固态钙钛矿微晶硅复合薄膜;将钙钛矿光吸收层材料和P型微晶硅材料相互匹配复合,所制得的全固态钙钛矿微晶硅复合薄膜太阳电池同时克服了现有钙钛矿太阳电池因使用有机空穴传输材料而存在的稳定性差和价格昂贵的缺点,以及微晶硅薄膜太阳电池存在低制备速率导致制备成本高及光电转换效率低的缺点。

【技术实现步骤摘要】
全固态钙钛矿微晶硅复合太阳电池及其制备方法
本专利技术的技术方案涉及专门适用于将光能转换为电能的半导体器件,具体地说是全固态钙钛矿微晶硅复合太阳电池及其制备方法。
技术介绍
在化石燃料日趋减少的情况下,太阳能作为一种新兴的可再生能源已成为人类使用能源的重要组成部分,并得到不断的发展。太阳能发电是太阳能利用的一种主要形式,低价高效并长期稳定的太阳电池是利用太阳能实现大规模光电转换的基础。目前迅速发展的一类太阳电池是钙钛矿太阳电池,由导电基底、电子传输材料、钙钛矿光吸收层、有机空穴传输材料和金属电极构成。其中的钙钛矿光吸收层具有低廉的成本、简单的制备工艺、良好的光吸收、光电转换特性以及优异的光生载流子输运特性,其电子与空穴扩散长度均可超过1000nm,因而采用这种新型光电转换材料构成的钙钛矿太阳电池具有特别优异的光电转换特性,目前实验室样品的光电转换效率已高达16%以上,高于商用的非晶硅太阳电池和微晶硅太阳电池。然而,地面光伏设备要求在户外运行20年或更长时间,典型的钙钛矿太阳电池中承担空穴传输的有机空穴传输材料构成的有机空穴传输层的阻隔电子通过空穴,有效地实现光生电子空穴分离最终实现光电转化的功能要面临室外长期稳定运行的挑战。现有钙钛矿太阳电池主要采用2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(简称SpiroOMeTAD)、聚合3-己基噻吩(简称P3HT)和富勒烯衍生物(简称PCBM)构成有机空穴传输层。有研究表明,目前这种包含上述有机空穴传输层的钙钛矿太阳电池的光电转化的性能在3个月就下降了22%甚至70%。此外,目前上述有机空穴传输材料的价格昂贵,甚至几倍于金、铂等贵金属,再就是有机材料的氧化和还原所导致的不稳定性,重结晶和温度变化导致的器件衰老等因素致使现有钙钛矿太阳电池的稳定性差。目前迅速发展的另一类太阳电池是微晶硅薄膜太阳电池,是由在玻璃(glass)衬底上沉积透明导电膜(TCO),然后依次用等离子体反应沉积p型、i型、n型三层a-Si,接着再蒸镀金属电极铝(Al)构成。硅是一种非常优良的半导体材料,无毒无害,在地球储量丰富,通过掺杂可以形成优良的性能稳定的p型空穴传输材料和n型电子传输材料。微晶硅是微晶粒、晶粒间界和非晶相共存的混合相材料,其带隙随着晶相比的不同而不同,由1.2eV到1.7eV连续可调,而且几乎没有光致衰退效应,可制备成性能优良的太阳电池。例如,CN101415861公开的微晶硅膜形成方法以及太阳电池,CN101488560公开的有机染料分子敏化非晶硅/微晶硅太阳电池的制备方法(只是对微晶硅太阳电池的I层,即本征层做了化学敏化处理)和CN101540352公开的微晶硅太阳能电池的制造方法,都是报道这一类电池及其制造方法。但是,现有非晶硅、微晶硅薄膜太阳电池面临制备工艺复杂和成本较高的诸多问题。如微晶硅薄膜太阳电池的本征层厚度需1~3.5um左右,其制备环节的沉积速率多在0.1~10nm/s左右,这使得沉积速率成为制约其发展的主要问题之一;微晶硅薄膜沉积速率的提高往往需要提高功率密度,但带来的问题就是电子温度过高,并引起离子的能量过高及高能量的离子过多,高能离子的轰击是使薄膜质量变差的重要原因。目前的微晶硅薄膜太阳电池的低制备速率导致制备成本高,扼制了其大规模生产和应用。此外,商业化的单结的非晶硅/微晶硅太阳电池的光电效率在10%左右,相对低于其他商业化太阳电池的光电效率。钙钛矿太阳电池和微晶硅薄膜太阳电池虽然是当前太阳电池研究中最受瞩目的两种新型薄膜电池,分别具有低成本和性能稳定的优势,但又分别存在稳定性差且价格昂贵和低制备速率导致制备成本高且光电转换效率低的缺点。
技术实现思路
本专利技术所要解决的技术问题是:提供全固态钙钛矿微晶硅复合太阳电池及其制备方法,将钙钛矿光吸收层材料和P型微晶硅材料相互匹配复合,所制得的全固态钙钛矿微晶硅复合薄膜太阳电池同时克服了现有钙钛矿太阳电池因使用有机空穴传输材料而存在的稳定性差和价格昂贵的缺点,以及微晶硅薄膜太阳电池存在低制备速率导致制备成本高及光电转换效率低的缺点。本专利技术解决该技术问题所采用的技术方案是:全固态钙钛矿微晶硅复合太阳电池,由透明导电基底、氧化物半导体薄膜层、钙钛矿光吸收层、微晶硅空穴传输层和背电极构成;其中,透明导电基底为透明导电玻璃基底或柔性透明导电基底,氧化物半导体薄膜层是n型半导体薄膜,钙钛矿光吸收层由钙钛矿结构的光吸收材料构成,微晶硅空穴传输层是微晶硅薄膜层且具备与钙钛矿光吸收层相匹配的能级,背电极是铝或铜构成的膜;所述氧化物半导体薄膜层被涂覆在透明导电基底上,在涂覆了氧化物半导体薄膜的透明导电基底上制备钙钛矿光吸收层,微晶硅空穴传输层沉积在钙钛矿光吸收层上形成全固态钙钛矿微晶硅复合薄膜,背电极被镀在上述全固态钙钛矿微晶硅复合薄膜上。上述全固态钙钛矿微晶硅复合薄膜太阳电池,所述透明导电玻璃基底是掺杂氟的SnO2透明导电玻璃基底。上述全固态钙钛矿微晶硅复合薄膜太阳电池,所述柔性透明导电基底是以掺杂Sn的In2O3为导电层的导电聚乙烯对苯二甲脂基底。上述全固态钙钛矿微晶硅复合薄膜太阳电池,所述氧化物半导体薄膜是二氧化钛薄膜,其厚度为20~100nm。上述全固态钙钛矿微晶硅复合薄膜太阳电池,所述钙钛矿结构的光吸收材料是CH3NH3PbI3或CH3NH3PbI3-xClx(0<x<3)。上述全固态钙钛矿微晶硅复合薄膜太阳电池,所述钙钛矿光吸收层的厚度为10~1000nm。上述全固态钙钛矿微晶硅复合薄膜太阳电池,所述微晶硅空穴传输层的厚度为20~500nm。上述全固态钙钛矿微晶硅复合薄膜太阳电池,所述透明导电玻璃基底或柔性透明导电基底、掺杂氟的SnO2透明导电玻璃基底均是公知的商购材料。上述全固态钙钛矿微晶硅复合薄膜太阳电池的制备方法,其步骤如下:第一步,制备涂覆了二氧化钛薄膜的透明导电基底:(1)涂布用TiO2致密层旋涂液的制备:以取所需量的钛酸丁酯为前驱物,按体积比为钛酸丁酯:无水乙醇:乙酸=3:12:1,将无水乙醇和乙酸先后加入到搅拌中的钛酸丁酯中,室温下搅拌5~30min后由此形成混合液,再按体积比为混合液:去离子水:无水乙醇:乙酸=15~20:1:10:2,将去离子水,无水乙醇和乙酸混合后加入到先前得到的混合液中,并不断搅拌,然后将由此生成的悬浊液进行搅拌水浴加热处理,在20~60min内使其自室温均匀升温至70~80℃,并保温5~15min,至该液体刚好澄清形成溶胶,由此制得涂布用TiO2致密层旋涂液;(2)透明导电基底的处理:所述透明导电基底是透明导电玻璃基底或柔性透明导电基底,将透明导电玻璃基底或柔性透明导电基底先用洗衣粉清洗干净,再用丙酮和乙醇超声波清洗20min,然后用去离子水冲洗2~5s,冲洗后的透明导电玻璃基底浸泡在无水乙醇中0.5h,随后去取出用氮气吹干,放入摩尔浓度为40mmol/L的TiCl4水溶液中,在70℃水浴条件下处理30min,待用;(3)旋涂制得涂覆了二氧化钛薄膜的透明导电玻璃基底或柔性透明导电基底:用旋涂仪以转速为2000rpm旋涂5~20s,将上述(1)步得到的涂布用TiO2致密层旋涂液旋涂在经上述(2)步处理后的透明导电玻璃基底或柔本文档来自技高网
...
全固态钙钛矿微晶硅复合太阳电池及其制备方法

【技术保护点】
全固态钙钛矿微晶硅复合太阳电池,其特征在于:由透明导电基底、氧化物半导体薄膜层、钙钛矿光吸收层、微晶硅空穴传输层和背电极构成;其中,透明导电基底为透明导电玻璃基底或柔性透明导电基底,氧化物半导体薄膜层是n型半导体薄膜,钙钛矿光吸收层由钙钛矿结构的光吸收材料构成,微晶硅空穴传输层是微晶硅薄膜层且具备与钙钛矿光吸收层相匹配的能级,背电极是铝或铜构成的膜;所述氧化物半导体薄膜层被涂覆在透明导电基底上,在涂覆了氧化物半导体薄膜的透明导电基底上制备钙钛矿光吸收层,微晶硅空穴传输层沉积在钙钛矿光吸收层上形成全固态钙钛矿微晶硅复合薄膜,背电极被镀在上述全固态钙钛矿微晶硅复合薄膜上。

【技术特征摘要】
1.全固态钙钛矿微晶硅复合太阳电池,其特征在于:由透明导电基底、氧化物半导体薄膜层、钙钛矿光吸收层、微晶硅空穴传输层和背电极构成;其中,透明导电基底为掺杂氟的SnO2透明导电玻璃基底或以掺杂Sn的In2O3为导电层的导电聚乙烯对苯二甲脂基底,氧化物半导体薄膜层是厚度为20~100nm二氧化钛薄膜的n型半导体薄膜,钙钛矿光吸收层由CH3NH3PbI3或CH3NH3PbI3-xClx(0<x<3)构成,其厚度为10~1000nm,微晶硅空穴传输层是微晶硅薄膜层且具备与钙钛矿光吸收层相匹配的能级,其厚度为20~500nm,背电极是铝或铜构成的膜;所述氧化物半导体薄膜层被涂覆在透明导电基底上,在涂覆了氧化物半导体薄膜的透明导电基底上制备钙钛矿光吸收层,微晶硅空穴传输层沉积在钙钛矿光吸收层上形成全固态钙钛矿微晶硅复合薄膜,背电极被镀在上述全固态钙钛矿微晶硅复合薄膜上。2.权利要求1所述全固态钙钛矿微晶硅复合薄膜太阳电池的制备方法,其步骤如下:第一步,制备涂覆了二氧化钛薄膜的透明导电基底:(1)涂布用TiO2致密层旋涂液的制备:以取所需量的钛酸丁酯为前驱物,按体积比为钛酸丁酯:无水乙醇:乙酸=3:12:1,将无水乙醇和乙酸先后加入到搅拌中的钛酸丁酯中,室温下搅拌5~30min后由此形成混合液,再按体积比为混合液:去离子水:无水乙醇:乙酸=15~20:1:10:2,将去离子水,无水乙醇和乙酸混合后加入到先前得到的混合液中,并不断搅拌,然后将由此生成的悬浊液进行搅拌水浴加热处理,在20~60min内使其自室温均匀升温至70~80℃,并保温5~15min,至该液体刚好澄清形成溶胶,由此制得涂布用TiO2致密层旋涂液;(2)透明导电基底的处理:所述透明导电基底是掺杂氟的SnO2透明导电玻璃基底或以掺杂Sn的In2O3为导电层的导电聚乙烯对苯二甲脂基底的柔性透明导电基底,将透明导电玻璃基底或柔性透明导电基底先用洗衣粉清洗干净,再用丙酮和乙醇超声波清洗20min,然后用去离子水冲洗2~5s,冲洗后的透明导电玻璃基底浸泡在无水乙醇中0.5h,随后去取出用氮气吹干,放入摩尔浓度为40mmol/L的TiCl4水溶液中,在70℃水浴条件下处理30min,待用;(3)旋涂制得涂覆了二氧化钛薄膜的透明导电玻璃基底或柔性透明导电基底:用旋涂仪以转速为2000rpm旋涂5~20s,将上述(1)步得到的涂布用TiO2致密层旋涂液旋涂在经上述(2)步处理后的透明导电玻璃基底或柔性透明导电基底上面,在透明导电玻璃基底或柔性透明导电基底表面形成一层均匀的TiO2凝胶,涂布完毕放入63℃烘箱中烘烤60min取出,重复上述涂覆和烘烤工艺操作过程2~5次,得到干燥的涂覆了二氧化钛薄膜的透明导电玻璃基底或柔性透明导电基底;(4)基底的热处理:将上述(3)步得到干燥的涂覆了二氧化钛薄膜的透明导电玻璃基底放入马弗炉中进行热处理,升温到500℃退火2h,自然冷却至室温,制得涂覆在透明导电玻璃基底上的TiO2薄膜层,其薄膜厚度为20~100nm;将上述(3)步得到干燥的涂覆了二氧化钛薄膜的柔性透明导电基底于120℃烘箱中烘烤200min取出,自然冷却至室温,制得涂覆在柔性透明导电基底上的TiO2薄膜,其薄膜厚度为20~100nm;第二步,在涂覆了二氧化钛薄膜的透明导电基底上制备钙钛矿光吸收层:选用下述两种工艺中的任意一种:A.溶液一步法,即旋涂法:A-1.CH3NH3I的制备:制备CH3NH3I的原料是重量百分比浓度为33%的甲胺乙醇溶液和重量百分比浓度为57%的碘化氢溶液,按体积比为百分比浓度为33%的甲胺乙醇溶液:重量百分比浓度为57%的碘化氢溶液=2~3:1将两种溶液混合后放入到250mL的圆底烧瓶内,在0℃下,利用恒温磁力搅拌器不停搅拌1.5~2h,搅拌完毕后利用旋转蒸发仪在50℃下通过旋转蒸发去除溶剂,之后将获得的白色固体用乙醚清洗三次,具体清洗步骤为:先将前述获得的白色固体重新全部溶解在乙醇中,再不断地添加干乙醚析出沉淀物,此过程重复两次,最后将得到的白色固体放入到真空干燥箱中,在60℃和真空度为5×104Pa的条件下干燥24h,制得CH3NH3I;A-2.钙钛矿前驱溶液的制备:将摩尔比为质量百分比为99.999%的PbCl2:上述A-1步制得的CH3NH3=1:3混合,并溶解在质量百分比纯度为99.9%的N,N-二甲基甲酰胺中,使得PbCl2的浓度为0.5~1M,CH3NH3I的浓度为1~2.5M,在室温下,放到磁力搅拌器中搅拌12h,制得成分为CH3NH3PbI3的钙钛矿前驱溶液,待用;A-3.旋涂钙钛矿光吸收层的湿膜:将经第一步制得的涂覆了二氧化钛薄膜的透明导电基底放到旋涂仪上,取所需量的由上述A-2步制得的钙钛矿前驱...

【专利技术属性】
技术研发人员:田汉民吴亚美杨瑞霞金慧娇王伟杨帆张明兰杨帆赵红东
申请(专利权)人:河北工业大学
类型:发明
国别省市:天津;12

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1