一种复合陶瓷石墨电极制造技术

技术编号:10716713 阅读:108 留言:0更新日期:2014-12-03 19:02
一种复合陶瓷石墨电极,由石墨棒基体及基体外围的复合陶瓷层组成,其特征在于由内到外的结构依次为含有SiC纳米颗粒的石墨棒、SiC涂层和HfC涂层,涂层的厚度分别为10~50nm和10~50mm。所述的SiC纳米颗粒在棒中呈梯度分布,浓度沿石墨棒径向方向向外增强,中心浓度为0,含量为0~6%,最边缘浓度为3~6%。该石墨电极具有优良的抗氧化性能和高发射性能,恒定热流条件下,比传统的硬质合金涂层表面温度低几百摄氏度。

【技术实现步骤摘要】
一种复合陶瓷石墨电极
本专利技术涉及石墨电极
,特别是涉及一种复合陶瓷石墨电极。
技术介绍
石墨电极是电弧炉和炉外精炼钢包炉不可缺少的重要材料。石墨电极消耗过大是电弧炉炼钢及LF精炼的主要问题,目前我国的电炉用石墨电极平均单耗为7~8kg/t钢,约占电炉炼钢成本的8%。世界主要产钢国石墨电极消耗平均低于5kg/t钢,世界最先进水平为2.4kg/t钢。冶金企业使用的石墨电极,原材料主要是石油沥青和煤焦油沥青,它具有良好的高温性能,热膨胀系数低、重量轻,耐腐蚀性强,易于加工,抗热冲击性能优良,但是它在高温下极易氧化,石墨的氧化从450℃开始,超过750℃后氧化急剧增加,且随着温度的升高而加剧,通常石墨电极表面温度很高,并处在空气环境下,造成严重的氧化。在氧化性气氛下,高温使石墨很容易被氧化,因此石墨电极从氧化部位开始往下逐渐变细,使电极的抗耗性下降;另外由于电流的集肤效应,较细的电极,电流密度增大,电极的抗大电流冲击能力亦下降,从而导致了石墨电极的单耗增加。因此,石墨电极的高温抗氧化技术得到了较为广泛的研究。申请公布号为CN103632749A的中国专利技术专利提供了一种石墨电极,电极中心开一通孔为空心管状,在电极的一端设有金属膜。该专利技术的有效效果是空心管状的电极缩短了生产周期,降低了能耗,提高了产量;一端镀有的金属膜使其能够代替金属电极使用,降低了使用成本,扩大了石墨电极的使用范围。但是金属镀膜与电极之间的膨胀系数存在明显的差异,层间结合薄弱,高温时抗氧化性能有限。公开号为CN101343752A的中国专利技术专利提供了一种涂覆高温抗氧化陶瓷涂料的石墨电极及其制备方法,其特征在于在电极表面涂覆高温抗氧化陶瓷涂料,可在普通电极表面形成一层能够阻挡氧气向电极表面扩散的陶瓷涂层,从而有效保护电极不被氧化,进而降低电极消耗和生产成本。该专利技术使用偏铝酸钠为粘结剂,在高温下使其结构中的水蒸发出来,形成多孔涂层,减弱了对石墨电极的保护作用,并且在石墨电极的升温过程中,涂料与石墨电极的热膨胀系数差异较大,容易剥离或者剥落而失效。碳化硅(SiC)是具有高温强度大、抗氧化性强、耐磨损好、热稳定性好、热膨胀系数小、热导率大、硬度高以及抗热震和耐化学腐蚀等优良特性,被广泛应用于高温耐火的各种领域。例如,SiC陶瓷在石油化学工业中被用作各种耐腐蚀用容器及管道,机械工业中被成功地用作各种轴承、切削刀具和机构密封部件;在宇航和汽车工业中也被认为是制造燃气轮机、火箭喷嘴和发动机部件最有希望的候选材料。而碳化铪(HfC)的密度为12.7g/cm3,熔点为3890℃,是已知单一化合物中熔点最高者。体积电阻率1.95×10-4Ω·cm(2900℃),热膨胀系数6.73×10-6/℃。碳化铪能与许多化合物(如ZrC、TaC等)形成固溶体,具有高熔点和高弹性系数,良好的电热传导性,小的热膨胀和好的冲击性能。鉴于碳化硅(SiC)与碳化铪(HfC)的优异高温特性及相容性,为高性能抗氧化石墨电极的研制提供了新的思路。
技术实现思路
本项目旨在提供一种复合陶瓷石墨电极,能够有效克服传统石墨电极高温易氧化和抗氧化处理后发射性能差的缺陷。本专利技术所述的复合陶瓷石墨电极呈圆柱状,由石墨棒基体及基体外围的复合陶瓷层组成,其特征在于由内到外的结构依次为石墨棒、SiC涂层和HfC涂层,不同成分之间有着紧密的分子或原子间结合。所述的石墨棒可以是空心的,也可以是实心的,由SiC纳米颗粒与石墨颗粒组成,SiC纳米颗粒在棒中呈梯度分布,浓度沿石墨棒径向方向向外增强,中心浓度为0,最边缘浓度为3~6%。在石墨棒基体中,所述的SiC纳米颗粒的含量为0~6%。所述的SiC涂层结构致密,厚度为10~50nm。所述的HfC涂层均匀分布在SiC涂层外围,与碳化硅涂层结合紧密,厚度为10~50mm。所述的SiC涂层和HfC涂层的交叠层数为1~5层。本专利技术的主要优点是:①该复合陶瓷石墨电极具有优良的抗氧化性能和高发射性能;在2000℃高温下的发射率达到0.8~0.9;②电极的组织十分致密,机械强度高,质量稳定,具有良好的导电性能,耐磨,耐高温性能;③恒定热流条件下,比传统的硬质合金涂层表面温度低几百摄氏度。附图说明图1为一种复合陶瓷石墨电极的截面示意图。图中10为含有SiC纳米颗粒的石墨棒;20为SiC涂层;30为HfC涂层;40为SiC纳米颗粒。具体实施方式下面结合具体实施例,进一步阐明本专利技术,应理解这些实施例仅用于说明本专利技术而不用于限制本专利技术的范围,在阅读了本专利技术之后,本领域技术人员对本专利技术的各种等价形式的修改均落于本申请所附权利要求所限定。实施例1一种复合陶瓷石墨电极,呈圆柱状,由石墨棒及复合陶瓷层组成。其中,石墨棒由6%的SiC纳米颗粒与94%的石墨颗粒组成,SiC纳米颗粒在棒中呈梯度分布,浓度沿石墨棒径向方向向外增强,中心浓度为0,最边缘浓度为6%。所述的复合陶瓷层由结构致密的SiC涂层和HfC涂层交叠组成,交叠层数为5层。其中,SiC涂层的厚度为20nm,第一层SiC涂层紧密结合在石墨棒外围。所述的HfC涂层均匀分布在SiC涂层外围,与碳化硅涂层结合紧密,厚度为30mm。该石墨电极具有优良的抗氧化性能和高发射性能,在2000摄氏度时发射率为0.87。实施例2一种复合陶瓷石墨电极,呈圆柱状,由石墨棒及复合陶瓷层组成。其中,石墨棒由3%的SiC纳米颗粒与97%的石墨颗粒组成,SiC纳米颗粒在棒中呈梯度分布,浓度沿石墨棒径向方向向外增强,中心浓度为0,最边缘浓度为4%。所述的复合陶瓷层由结构致密的SiC涂层和HfC涂层交叠组成,交叠层数为3层。其中,叠层中SiC涂层的厚度为10nm,第一SiC涂层紧密结合在石墨棒外围。所述的HfC涂层均匀分布在每层SiC叠层外围,与碳化硅涂层结合紧密,厚度均为10mm。该石墨电极具有优良的抗氧化性能和高发射性能,在1700摄氏度时发射率为0.9。实施例3一种复合陶瓷石墨电极,呈圆柱状,由石墨棒及复合陶瓷层组成。其中,石墨棒由粒径不等的石墨颗粒组成,石墨棒的外围紧密结合有梯度分布的SiC涂层,SiC涂层的厚度为50nm。SiC涂层的外围紧密结合有均匀分布的HfC涂层,厚度为50mm。该石墨电极具有优良的抗氧化性能和高发射性能,在3700摄氏度时发射率为0.8。上述仅为本专利技术三个具体实施方式,但本专利技术的设计构思并不局限于此,凡利用此构思对本专利技术进行非实质性的改动,均应属于侵犯本专利技术保护的范围的行为。但凡是未脱离本专利技术技术方案的内容,依据本专利技术的技术实质对以上实施例所作的任何形式的简单修改、等同变化与改型,仍属于本专利技术技术方案的保护范围。本文档来自技高网
...
一种复合陶瓷石墨电极

【技术保护点】
一种复合陶瓷石墨电极,由石墨棒基体及基体外围的复合陶瓷层组成,其特征在于由内到外的结构依次为含有SiC纳米颗粒的石墨棒、SiC涂层和HfC涂层,不同成分之间有着紧密的分子或原子间结合。

【技术特征摘要】
1.一种复合陶瓷石墨电极,由石墨棒基体及基体外围的复合陶瓷层组成,其特征在于由内到外的结构依次为含有SiC纳米颗粒的石墨棒、SiC涂层和HfC涂层,不同成分之间有着紧密的分子或原子间结合。2.根据权利要求1所述的复合陶瓷石墨电极,其特征在于所述的石墨棒由SiC纳米颗粒与石墨颗粒组成,SiC纳米颗粒...

【专利技术属性】
技术研发人员:陈照峰聂丽丽
申请(专利权)人:苏州宏久航空防热材料科技有限公司
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1