一种液流电池用一体化电解液储罐制造技术

技术编号:10646165 阅读:101 留言:0更新日期:2014-11-12 19:52
一种液流电池用一体化电解液储罐,所述一体化电解液储罐为中空容器,其内竖向设置有正负极隔板将储罐内分为互不连通的正极腔室和负极腔室两部分;沿任意水平面的正极腔室和负极腔室的横截面面积均相等;隔板上设有通孔。本发明专利技术可以使液流电池在运行过程中,时刻保持正、负极电解质溶液温度保持基本一致,降低了由于正、负极电解质溶液温度的差异对电池反应产生的影响,进而使电池反应更具同步性。

【技术实现步骤摘要】

本专利技术涉及一种用于液流储能电池的电解质溶液储罐,更具体而言,本专利技术提供一种液流储能电池电解质溶液储罐的设计方法。 
技术介绍
随着国民经济快速发展,能源短缺和环境污染的现状日趋严峻,能源、资源和环境保护间的矛盾也日益突出。为实现可持续发展,调整当前电力能源结构,开发规模化利用风能、太阳能等可再生清洁能源,已经成为我国电力能源发展的基本国策。风能、太阳能等可再生能源发电过程具有不稳定和不连续的特点,需要配备蓄电储能装置,才能实现连续、稳定的电能输出,避免对局部电网产生冲击而引发的大规模恶性事故。液流储能电池(Redox Flow Battery,简称RFB)由于具有系统容量和功率相互独立可调、响应迅速,安全可靠,循环寿命长,操作维护简单,环境友好等突出优势而成为可再生能源发电,电网削峰填谷,应急及备用电站等规模化储能中最有发展前景的技术之一。以全钒液流电池(Vanadium Redox Flow Battery,VRFB)为代表的规模化蓄电储能装置近年来得到快速发展,逐步进入大规模示范阶段。在现有的电网系统中,通过大规模蓄电储能实现“削峰填谷”作用,能够缓和电力供需矛盾,提高发电设备利用率,降低火力发电能耗。通常液流电池系统由电池、正极管路、正极电解质溶液储罐、正极泵、负极管路、负极电解质溶液储罐、负极泵等主要部件组成。通过正极泵和负极泵经正极管路和负极管路将电解质溶液从正极电解质 溶液储罐和负极电解质溶液储罐导入电池的正极和负极,并再返回正极电解质溶液储罐和负极电解质溶液储罐中,来实现整个电池系统中液体的循环流动。 >目前,液流储能电池在长时间、多循环运行时存在的问题主要有以下几个方面,正、负极离子及水的迁移、扩散;电解质溶液稳定性差;正、负极电解质溶液温度不一致,致使两极反应速度差异变大,导致电池效率下降等。 很多研究人员在此基础上做了一定的工作,大多数都是在正、负极电解质溶液储罐之间通过外部元件的加入从而使电解质溶液的体积保持一致,进而达到降低容量衰减速度的目的。 
技术实现思路
本专利技术目的在于提供一种液流储能电池的电解液储罐,为实现上述目的,本专利技术采用的技术方案如下: 一种液流电池用一体化电解液储罐,所述一体化电解液储罐为中空容器,其内竖向设置有正负极隔板将储罐内分为互不连通的正极腔室和负极腔室两部分;沿任意水平面的正极腔室和负极腔室的横截面面积均相等;隔板上设有通孔。 所述隔板上孔个数≥2。 于一体化电解液储罐内装填有电解液,隔板的上端处于电解液液面以上,处于电解液液面以下的通孔保持正极腔室和负极腔室内电解液相互连通;处于电解液液面以下的通孔总有效面积为处于电解液液面以下的隔板面积的0.0005%-0.01%。 所述处于电解液液面以下的通孔总有效面积为处于电解液液面以下的隔板 面积的优选0.0006%-0.005%。 所述处于电解液液面以下的通孔总有效面积为处于电解液液面以下的隔板面积的更优选0.0008%-0.001%。 所述隔板垂直设置于储罐内。 电解液储罐和隔板材质为PVC、PTFE、PP或PE材料。 液流电池包括全钒液流电池、全铁液流电池、铁铬液流电池或铁钒液流电池。 本专利技术提到的的“正、负极一体化电解质溶液储罐”,其材质可以为PVC、PTFE、PP、PE等任何的耐腐蚀材料制成。 一体化电解液储罐体积可以为大于10mL的任意体积值;其形状可以为任意形状。 本专利技术的有益结果: (1)本专利技术可以使液流电池在运行过程中,时刻保持正、负极电解质溶液温度保持基本一致,降低了由于正、负极电解质溶液温度的差异对电池反应产生的影响,进而使电池反应更具同步性。 (2)本专利技术可以使液流电池在运行过程中,通过浓度平衡的原理,使正、负极电解质溶液的浓度基本保持一致,减少了由于正、负极电解质溶液的浓差极化给电池效率带来的影响,进而使电池在长期运行可以保持较稳定的效率值。 (3)本专利技术可以使液流电池在运行过程中,通过小孔的连接,可以有效解决电池在长期运行中出现的电解质溶液体积迁移问题,正、负极电解质溶液的液位保持基本一致,降低电池容量衰减速率。 (4)本专利技术所采用的方法简单可行,不需要加入任何的辅助元件。 (5)本专利技术可以使原本的正、负极两个电解质溶液储罐变为一个正、负极一体化电解质溶液储罐,这样不但减少了整个电池系统的占地面积、节省了安装时间,并且在一定程度上降低了成本。 附图说明图1示出一种传统液流电池装置,该装置由7液流电池,3正极电解质溶液储罐,4负极电解质溶液储罐,5正极泵,6负极泵,1负极管路,2正极管路等部件组成。 图2示出一种带有正、负极一体化电解质溶液储罐的液流电池装置,该装置由11液流电池,10正、负极一体化电解质溶液储罐,12小孔,13隔板,8正极泵,9负极泵以及正、负极管路等部件组成。 具体实施方式实施例是对本专利技术的进一步说明,而不是限制本专利技术的范围。 实施例中所述的一体化电解液储罐是一个顶端开口的方形容器,该一体化电解液储罐由垂直于底部的隔板将一体化电解液储罐分为沿任意水平面的正极腔室和负极腔室的横截面面积均相等的两部分。并且在液面以下的隔板上设有通孔,使正负极电解液保持连通。 实施例中所选用的液流电池体系为全钒氧化还原液流电池,具体说明如下: 1.该电池由10节单电池组成; 2.该电池电极面积为1000cm2; 3.钒电解质溶液浓度为1.5mol/L; 4.电池恒流充放电的电流密度为80mA/cm2; 5.单节电池充放电截止电池分别为1.55V和1.0V; 6.正、负极一体化电解液储液罐内各装入40L钒电解质溶液,液面以下隔板面积为4000cm2,液面初始高度均为80cm。 实施例1 正、负极一体化电解质溶液储罐隔板上小孔的有效面积为2mm2时,电池运行200个充放电循环,记录数据。 实施例2 正、负极一体化电解质溶液储罐隔板上小孔的有效面积为5mm2时,电池运行200个充放电循环,记录数据。 实施例3 正、负极一体化电解质溶液储罐隔板上小孔的有效面积为10mm2时,电池运行200个充放电循环,记录数据。 实施例4 正、负极一体化电解质溶液储罐隔板上小孔的有效面积为15mm2时,电池运行200个充放电循环,记录数据。 实施例5 正、负极一体化电解质溶液储罐隔板上小孔的有效面积为20mm2时,电池运行200个充放电循环,记录数据。 实施例6 正、负极一体化电解质溶液储罐隔板上小孔的有效面积为25mm2时,电池运行200个充放电循环,记录数据。 实施例7 正、负极一体化电解质溶液储罐隔板上小孔的有效面积为30mm2时,电池运行200个充放电循环,记录数据。 实施例8 正、负极一体化电解质溶液储罐隔板上小孔的有效面积为40mm2时,电池运行200个充放电循环,记录数据。本文档来自技高网...

【技术保护点】
一种液流电池用一体化电解液储罐,其特征在于:所述一体化电解液储罐为中空容器,其内竖向设置有正负极隔板将储罐内分为互不连通的正极腔室和负极腔室两部分;沿任意水平面的正极腔室和负极腔室的横截面面积均相等;隔板上设有通孔。

【技术特征摘要】
1.一种液流电池用一体化电解液储罐,其特征在于:所述一体化电解液储
罐为中空容器,其内竖向设置有正负极隔板将储罐内分为互不连通的正极腔室
和负极腔室两部分;沿任意水平面的正极腔室和负极腔室的横截面面积均相等;
隔板上设有通孔。
2.根据权利要求1所述的一体化电解液储罐,其特征在于:所述隔板上孔
个数≥2。
3.根据权利要求1所述的一体化电解液储罐,其特征在于:于一体化电解
液储罐内装填有电解液,隔板的上端处于电解液液面以上,处于电解液液面以
下的通孔保持正极腔室和负极腔室内电解液相互连通;处于电解液液面...

【专利技术属性】
技术研发人员:史丁秦张华民李先锋钟和香孙佳伟
申请(专利权)人:中国科学院大连化学物理研究所
类型:发明
国别省市:辽宁;21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1