当前位置: 首页 > 专利查询>东北大学专利>正文

一种低成本电化学沉积制备稀土金属铽薄膜的方法技术

技术编号:20352331 阅读:23 留言:0更新日期:2019-02-16 12:24
本发明专利技术涉及一种低成本电化学沉积制备稀土金属铽薄膜的方法,属于稀土金属低温电沉积领域。一种低成本电化学沉积制备稀土金属铽薄膜的方法,其特征在于,包括下述工艺步骤:将硝酸锂溶解于DMI中得硝酸锂的DMI电解液,将硝酸锂的DMI电解液置于电解槽中,再向其中加入无水氯化铽,在电解槽内搅拌混合,使之形成均一体系,控制整个体系温度在25~80℃,电解电压范围‑2.0~‑2.4V vs Ag;电沉积过程中,每隔一段时间向电解槽内补加无水氯化铽,控制氯化铽摩尔浓度为起始浓度±2%。本发明专利技术所述方法在高效制备稀土金属铽膜的同时显著降低能耗和生产成本。

【技术实现步骤摘要】
一种低成本电化学沉积制备稀土金属铽薄膜的方法
本专利技术涉及一种低成本电化学沉积制备稀土金属铽薄膜的方法,属于稀土金属低温电沉积领域。
技术介绍
稀土元素被誉为“工业的维生素”“工业味精”、“新材料之母”,具有无法取代的优异磁、光、电性能,对改善产品性能,增加产品品种,提高生产效率起到了巨大的作用。由于稀土作用大,用量少,已成为改进产品结构、提高科技含量、促进行业技术进步的重要元素,被广泛应用到了冶金、军事、石油化工、玻璃陶瓷、农业和新材料等领域。特别地,铽主要应用于三基色荧光粉中的绿粉的激活剂,如铽激活的磷酸盐基质、铽激活的硅酸盐基质、铽激活的铈镁铝酸盐基质,在激发状态下均发出绿色光。此外,在磁光贮存材料方面,近年来铽系磁光材料已达到大量生产的规模,用Tb-Fe非晶态薄膜研制的磁光光盘,作计算机存储元件,存储能力提高10~15倍。磁光玻璃,含铽的法拉第旋光玻璃是制造在激光技术中广泛应用的旋转器、隔离器和环形器的关键材料。特别是铽镝铁磁致伸缩合金的开发研制,更是开辟了铽的新用途,铽镝铁磁致伸缩合金是70年代才发现的新型材料,该合金中有一半成份为铽和镝,有时加入钬,其余为铁,该合金由美国依阿华州阿姆斯实验室首先研制,当铽镝铁磁致伸缩合金置于一个磁场中时,其尺寸的变化比一般磁性材料变化大,这种变化可以使一些精密机械运动得以实现。铽镝铁开始主要用于声纳,目前已广泛应用于多种领域,从燃料喷射系统、液体阀门控制、微定位到机械致动器、太空望远镜的调节机构和飞机机翼调节器等领域,因此战略金属元素铽意义重大。目前,从工艺技术上讲,金属真空热还原和高温熔盐电解是稀土金属铽的传统制备方法,制备的金属铽采用真空蒸发沉积或溅射沉积方法在基底材料上沉积膜层。以上过程存在能耗高,污染严重,流程长,腐蚀性强,操作复杂,对设备要求较高等缺点。随着能源的日益紧张和环保问题的日益凸显,如何在获得高质量稀土金属铽薄膜的同时最大限度地减少对环境的污染并节约能源且操作方便,成为人们关注的焦点。电沉积方法拥有操作方便,简单灵活,对基底材料形状要求较低等特点,得到了广泛的研究。若能在室温或接近室温条件下电沉积制备稀土金属铽薄膜材料,不仅操作简单,而且成本低廉,可靠安全。由于稀土铽异常的活泼性,且其氧化还原电位很负,在水溶液体系中稀土铽离子在电极上由于析氢屏蔽作用无法直接被还原为稀土金属铽,因此电沉积金属铽的体系一般为非水溶剂。离子液体作为一种非水溶剂,也称作低温熔融盐,具有低熔点,低饱和蒸气压,电化学性质稳定等性质,亦被广泛用于电化学冶金过程的研究。但离子液体的合成工艺复杂,交换反应不彻底,存在竞争反应和副产物,且所得产物需多步纯化和分离,这显著增加了离子液体的生产成本和对环境污染的可能性,降低了离子液体的绿色特征。而最后制得的离子液体产品中水含量无法保证,严重影响了离子液体电沉积制备活泼金属铽膜过程。另一方面,常规离子液体电化学窗口较窄且对一般氯化物(如氯化镁,氯化钙,氯化稀土等)溶解能力有限,并且有些常见离子液体粘度大,空气中易吸水,因此很大程度限制了离子液体的实际应用。因此,目前来看,离子液体发展百年历史,但在金属电沉积领域仅局限于科学研究,并无大规模实际应用背景。
技术实现思路
针对上述现有的问题,本专利技术提供一种以硝酸锂(纯度大于99.9%)为支持电解质利用新型非质子强极性溶剂1,3-二甲基-2-咪唑啉酮(DMI)(纯度大于99.0%)低温电解氯化铽制备金属铽薄膜的方法。以氯化铽(纯度不小于99.9%)为原料,将其溶解于含0.02~0.1mol/L硝酸锂的DMI溶剂中电沉积制备高纯金属铽薄膜的短流程方法,在高效制备稀土金属铽膜的同时显著降低能耗和生产成本。一种低成本电化学沉积制备稀土金属铽薄膜的方法,所述方法为电沉积法,包括下述工艺步骤:S1,室温下,将硝酸锂溶于DMI中,硝酸锂于DMI中的摩尔浓度为0.01~0.1mol/L,得硝酸锂的DMI电解液,所述的DMI为结构式如下:S2,将硝酸锂的DMI电解液置于电解槽中,再向其内加入无水氯化铽,在电解槽内搅拌混合,使之形成均一体系,其中氯化铽摩尔浓度为0.01~0.05mol/L,控制整个体系温度在25~80℃,电解电压范围-2.0~-2.4VvsAg;S3,电解过程中,每隔一段时间向电解槽内补加无水氯化铽,控制氯化铽摩尔浓度为起始浓度±2%。上述技术方案中,所述硝酸锂、氯化铽的纯度均不小于99.9%;所述DMI纯度不小于99.0%。本专利技术所述“控制氯化铽摩尔浓度为起始浓度±2%”,指控制氯化铽摩尔浓度为起始浓度的98%~102%。本专利技术所述“电解电压范围-2.0~-2.4VvsAg”中“vsAg”指以银电极为参比电极。优选地,所述步骤S1中,硝酸锂在DMI中的摩尔浓度为0.02~0.1mol/L。优选地,所述步骤S2中,氯化铽摩尔浓度为0.02~0.05mol/L。优选地,所述步骤S3,每隔30min向电解槽内补加无水氯化铽,控制氯化铽摩尔浓度为起始浓度附近。优选地,所述方法包括步骤S4,每隔60min将阴极基底上形成的金属铽薄膜连带基底材料装有碳酸二甲酯或者煤油的器皿中封存。优选地,所述电解过程以高纯钨片(纯度≥99.99%)为阳极,以纯铜片(纯度≥99.99%)或纯铝片(纯度≥99.9%)为阴极。优选地,所述阳极和阴极之间的极间距为15mm。与现有的制备金属铽薄膜方法相比,本专利技术所述方法具有以下优点:(1)工艺流程缩短,显著降低生产能耗,降低生产成本,改善作业环境,简单灵活;(2)采用低温新型非质子强极性溶剂电沉积,可降低和消除采用高温熔盐电解质时能耗大、温度高、设备腐蚀严重的缺点,易操作,此外DMI溶剂不仅对氯化铽拥有优良的溶解性和高的介电常数还具有无毒,良好化学和热稳定性,对铜铁没有腐蚀,高沸点,高闪点,低熔点,易回收,安全性能好的特点。重要地,DMI溶剂拥有大规模化工生产背景,成本较于熔盐体系和离子液体大幅降低,另外DMI可用废塑料和温室气体二氧化碳合成,其绿色特质明显,具有大规模应用能力和前景。本专利技术的方法工艺可以在低温下电沉积制备稀土金属铽薄膜,得到的产品纯度高,对设备要求较低,可规模化生产以提高效率和产量,为低成本的稀土金属绿色制备提供技术储备和理论支持。附图说明图1为实施例8中在铜阴极板所得产物SEM图。具体实施方式下述非限制性实施例可以使本领域的普通技术人员更全面地理解本专利技术,但不以任何方式限制本专利技术。下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。本专利技术实施例中采用的无水氯化铽纯度99.9%,硝酸锂纯度99.9%,DMI纯度99.0%。本专利技术实施例中采用上海辰华电化学工作站作为电解电源。本专利技术实施例阳极为高纯钨片(纯度≥99.9%),阳极面积为1cm2,阴极为高纯铜片(纯度≥99.99%)或铝片(纯度≥99.99%),阴极面积为1cm2,参比电极为银丝(纯度≥99.99%,直径0.05cm)。本专利技术实施例中铽元素的含量是采用ICP(电感耦合等离子体原子发射光谱)检测;薄膜厚度测试手段为SEM(扫描电镜)。下述实施例中所述低成本电化学沉积制备稀土金属铽薄膜的方法,所述方法为电沉积法,包括下述工艺步骤:S1,室本文档来自技高网
...

【技术保护点】
1.一种低成本电化学沉积制备稀土金属铽薄膜的方法,其特征在于:所述方法为电沉积法,包括下述工艺步骤:S1,室温下,将硝酸锂溶解于DMI中,硝酸锂在DMI中的摩尔浓度为0.01~0.1mol/L,得硝酸锂的DMI电解液,所述的DMI为结构式如下:

【技术特征摘要】
1.一种低成本电化学沉积制备稀土金属铽薄膜的方法,其特征在于:所述方法为电沉积法,包括下述工艺步骤:S1,室温下,将硝酸锂溶解于DMI中,硝酸锂在DMI中的摩尔浓度为0.01~0.1mol/L,得硝酸锂的DMI电解液,所述的DMI为结构式如下:S2,将硝酸锂的DMI电解液置于电解槽中,再向其中加入无水氯化铽,在电解槽内搅拌混合,使之形成均一体系,其中氯化铽摩尔浓度为0.01~0.05mol/L,控制整个体系温度在25~80℃,电解电压范围-2.0~-2.4VvsAg;S3,电沉积过程中,每隔一段时间向电解槽内补加无水氯化铽,控制氯化铽摩尔浓度为起始浓度±2%。2.根据权利要求1所述的方法,其特征在于:所述步骤S1中...

【专利技术属性】
技术研发人员:石忠宁张保国姚宇胡宪伟高炳亮王兆文
申请(专利权)人:东北大学
类型:发明
国别省市:辽宁,21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1