【技术实现步骤摘要】
基于Freeman熵和自学习的极化SAR图像精细分类方法
本专利技术属于图像处理
,涉及极化合成孔径雷达图像分类,可用于图像目标检测以及图像目标分类与识别。
技术介绍
随着雷达技术的日益发展,极化SAR已成为SAR的发展趋势,极化SAR能够得到更丰富的目标信息。极化SAR图像的理解和解译涉及信号处理,模式识别等众多学科。极化SAR图像分类作为极化SAR图像处理的基本问题之一,为极化SAR图像后期的识别奠定基础。现有的极化SAR图像分类可以分为无监督聚类和有监督分类两类。无监督聚类方法包括:Cloude等人提出的利用散射熵,散射角以及逆熵的阈值来划分类别以及Freeman等人提取每个像素的三种散射功率,按所占比重对图像进行分类。以上这两种方法所用的阈值均需要人为确定,代价大且过于武断。有监督分类方法包括:Kong等人提出的利用数据的统计信息对极化SAR图像进行分类,这种方法对数据分布有严格要求;Hellmann等人提出的利用神经网络分类器来进行分类,这种方法的收敛速度慢,且容易陷入局部最优。同时,由于极化SAR图像真实地物标签很难获得,使得人工定义标签的代价大 ...
【技术保护点】
一种基于Freeman熵和自学习的极化SAR图像精细分类的方法,包括如下步骤:(1)对极化SAR图像G的所有像素点进行特征值分解;(2)每个像素点分别得到的三个大小不同的特征值λ1,λ2,λ3且λ1≥λ2≥λ3;(3)对极化SAR图像G的所有像素点进行Freeman分解,得到每个像素点的三种散射功率Pv,Ps,Pd,其中,Pv表示体散射功率,Ps表示表面散射功率,Pd表示二面角散射功率;(4)取每个像素点的三个特征值λ1,λ2,λ3及体散射功率Pv,构成每个像素点的特征向量[λ1,λ2,λ3,Pv],用所有像素点的特征构成特征矩阵X;(5)从特征矩阵X中随机采样m个点,构造 ...
【技术特征摘要】
1.一种基于Freeman熵和自学习的极化SAR图像精细分类的方法,包括如下步骤:(1)对极化SAR图像G的所有像素点进行特征值分解;(2)每个像素点分别得到三个大小不同的特征值λ1,λ2,λ3且λ1≥λ2≥λ3;(3)对极化SAR图像G的所有像素点进行Freeman分解,得到每个像素点的三种散射功率Pv,Ps,Pd,其中,Pv表示体散射功率,Ps表示表面散射功率,Pd表示二面角散射功率;(4)取每个像素点的三个特征值λ1,λ2,λ3及体散射功率Pv,构成每个像素点的特征向量[λ1,λ2,λ3,Pv],用所有像素点的特征构成特征矩阵X;(5)从特征矩阵X中随机采样m个点,构造特征子集Xm={xj|j=1,...,m},其中,xj是第j个采样点的特征,并利用马氏距离对特征子集Xm构造相似度矩阵W;5a)根据特征子集Xm中第j个采样点的特征利用马氏距离构造相似度矩阵wj:其中,xj表示特征子集Xm中第j个采样点的特征,xp表示特征子集Xm中第p个采样点的特征,Cm是特征子集Xm的协方差矩阵;5b)根据第j个采样点相似度矩阵wj,构造特征子集Xm的相似度矩阵W:W=[w1,...,wj,...,wm];(6)根据特征子集Xm的相似度矩阵W,利用NJW谱聚类算法,对特征子集Xm进行聚类,得到特征子集Xm的初始聚类标签Y;(7)对特征子集Xm和初始聚类标签Y进行学习,训练一个支撑矢量机分类器SVM;(8)用训练的支撑矢量机SVM对特征矩阵X进行分类,得到一个新的SVM分类结果标签Y′;(9)根据SVM分类结果标签Y′,利用每个像素点的特征值λ1对特征矩阵X进行马尔可夫随机场迭代,得到优化的分类结果标签Y″;(10)根据每个像素点的三种散射功率Pv,Ps,Pd,计算每个像素点的Freeman散射熵Hp;(11)根据优化分类结果标签Y″,取出标记为海洋的像素点,利用Freeman散射熵Hp对标记为海洋的像素点进行NJW谱聚类,得到最终地物类别。2.根据权利要求1所述的极化SAR图像分类方法,其中步骤(6)所述的根据特征子集Xm的相似度矩阵W,利用NJW谱聚类算法,对特征子集Xm进行聚类,得到特征子集Xm的初始聚类标签Y,按照如下步骤进行:6a)计算相似度矩阵W的拉普拉斯矩阵L=D-1/2WD-1/2,其中D为相似度矩阵W的度矩阵,D={d1,...,dj,...,d...
【专利技术属性】
技术研发人员:缑水平,焦李成,杜芳芳,马文萍,马晶晶,乔鑫,
申请(专利权)人:西安电子科技大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。