当前位置: 首页 > 专利查询>东南大学专利>正文

一种基于法向量的点云自动配准方法技术

技术编号:9008052 阅读:403 留言:0更新日期:2013-08-08 02:59
一种基于法向量的点云自动配准方法,处理对象为两幅及两幅以上相互间有重叠部分的三维点云数据,处理步骤为:(1)根据点云局部法向量的变化选取特征点;(2)设计一种直方图特征量对获得的每个特征点进行特征描述;(3)通过比较特征点的直方图特征向量获得初始匹配点对;(4)运用刚性距离约束条件结合RANSAC算法获取精确匹配点对,并利用四元素法计算得到初始配准参数;(5)采用改进的ICP算法对点云精确配准。按照上述步骤可对点云进行自动配准,本发明专利技术提出的特征描述简单且辨识度高,同时具有较高的鲁棒性,配准精度和速度都有一定的提高。

【技术实现步骤摘要】

本专利技术属于三维信息重构的领域,特别涉及一种点云自动配准方法。
技术介绍
物体表面三维重构一直是机器视觉领域研究的一个重要课题。被测物体表面点云数据可以由光学扫描仪快速获取,但由于光的线性传播特性,被测物体表面的完整数据需要在多个视角下多次测量获得,这样得到的数据便不在同一个坐标系下,所以为了获得物体的完整模型,需要对各个视角得到的数据进行坐标变换,最终合并到统一的坐标系中,这就是点云配准。点云配准技术在机器人导航、逆向工程、物体表面形状检测和虚拟现实等众多领域有着广泛的应用。根据待配准深度图的输入和输出结果的不同,现有的深度图配准方法可以大致分为两大类:粗配准和精配准。粗配准是指在没有任何先验知识的情况下,找到一组近似的坐标变换关系,将两个视点下的深度图统一到同一个坐标系中。由于配准之前没有深度图之间相对位置关系的任何信息,因此粗配准算法通常围绕如何建立模型相同位置处的两幅深度图之间对应元素的匹配关系展开,众多学者对此提出了不同的方法。这些方法按对应元素不同可以分为点-点对应、线-线对应和面-面对应以及体-体对应;若按匹配方式不同又可以分为基于欧氏距离相等关系和基于描述子相等关系;按匹配搜索范围可分为非特征匹配与特征匹配。然而由于测量模型的多样性和复杂性,粗配准算法往往依赖于一些具体的应用,对粗配准算法进一步研究的方向在于提高粗配准的精度、效率以及鲁棒性和适用性。粗配准的结果通常仅提供了深度图之间精确坐标变换的一个近似值,从而使得两幅深度图的重叠区域具有一定程度的贴合。然而这种近似的位置变换使得深度图重叠区域很难得到精确的贴合,往往会存在一些交错和分层现象,不利于后续深度图数据的融合,因此需要对深度图的位置进行进一步的调整以提高深度图的配准精度,这个过程称为精配准。精配准是在已通过粗配准获得了深度图之间坐标变换的近似值的基础上,通过不断迭代最小化两深度图上对应点之间的距离来实现更加精确的配准变换,其代表算法为经典的ICP算法。
技术实现思路
专利技术目的:提出,提高点云自动配准中配准的精度和速度,同时具有较高的鲁棒性。技术方案:,包括以下步骤:步骤1:基于法向量信息获取待匹配两个点云中的特征点集,具体步骤如下:步骤1.1:采用三维扫描仪获取带有法向量信息的多视角点云数据,且相邻视角获得的点云间有重叠部分,定义点云中重叠部分 的某一点Pi的特征度fi为点Pi的法向量与其k个近邻点法向量夹角的算术平均值:权利要求1.,其特征在于:包括以下步骤: 步骤1:基于法向量信息获取待匹配两个点云中的特征点集,具体步骤如下: 步骤1.1:采用三维扫描仪获取带有法向量信息的多视角点云数据,且相邻视角获得的点云间有重叠部分,定义点云中重叠部分的某一点特征度fi为点Pi的法向量与其k个近邻点法向量夹角的算术平均值:全文摘要,处理对象为两幅及两幅以上相互间有重叠部分的三维点云数据,处理步骤为(1)根据点云局部法向量的变化选取特征点;(2)设计一种直方图特征量对获得的每个特征点进行特征描述;(3)通过比较特征点的直方图特征向量获得初始匹配点对;(4)运用刚性距离约束条件结合RANSAC算法获取精确匹配点对,并利用四元素法计算得到初始配准参数;(5)采用改进的ICP算法对点云精确配准。按照上述步骤可对点云进行自动配准,本专利技术提出的特征描述简单且辨识度高,同时具有较高的鲁棒性,配准精度和速度都有一定的提高。文档编号G06T7/00GK103236064SQ201310168358公开日2013年8月7日 申请日期2013年5月6日 优先权日2013年5月6日专利技术者达飞鹏, 陶海跻, 潘仁林, 刘健, 郭涛, 陈璋雯 申请人:东南大学本文档来自技高网
...

【技术保护点】
一种基于法向量的点云自动配准方法,其特征在于:包括以下步骤:步骤1:基于法向量信息获取待匹配两个点云中的特征点集,具体步骤如下:步骤1.1:采用三维扫描仪获取带有法向量信息的多视角点云数据,且相邻视角获得的点云间有重叠部分,定义点云中重叠部分的某一点pi的特征度fi为点pi的法向量与其k个近邻点法向量夹角的算术平均值:fi=1kΣj=1kθij???(1)式其中某一点pi的k个近邻点是指与点pi欧氏距离最近的k个点,θij为点pi的法向量与其近邻点pj的法向量的夹角,k为5≤k≤20的自然数;步骤1.2:选取阈值ε1,去掉点云中fi≤ε1的平坦部分,保留fi>ε1的点,对于保留点中的任一点pm,若其满足:f(pm)=max(f(pm1),f(pm2),…,f(pmk))??(2)式则将pm作为特征点,其中f(pm1),f(pm2),…,f(pmk)为点pm的k个近邻点的特征度,其中阈值ε1取值范围为5°≤ε1≤10°;步骤1.3:利用步骤1.1和步骤1.2所述的特征点提取方法,分别对两个点云进行特征点提取,设待配准的两个点云数据分别为点集P和点集Q,其中点集Q为参考点云数据,得到待配准点云的特征点集为Pt={pt1,pt2,pt3,…ptm′},参考点云的特征点集为Qt={qt1,qt2,qt3,…qtn′},其中m′和n′分别为P和Q的特征点的个数;步骤2:建立特征点集的直方图特征描述,方法如下:步骤2.1:对于特征点集Pt中的每个点pti,在点集P中以pti为原点,半径为γ的球域内的点作为pti的邻近点,标记为N(pti),其中γ取值范围为点云的平均点间距离的5~10倍;步骤2.2:根据点pti与邻近点N(pti)之间的几何关系,建立三种特征描述:f1=acos??(3)式f2=??(4)式f3=||sk?pti||??(5)式其中ni为点pti的法向量,vk为pti邻近某个点N(pti)的法向量,sk为pti某个邻近点N(pti)的三维坐标;其中,式(3)中特征值f1是点集Pt中一点pti的法向量与其邻近一点N(pti)的法向量的夹角,根据夹角大小将其分成[0,20]、(20,40]、(40,60]和(60,180]4个间隔;式(4)中特征值f2是两个向量点积,其中一个是点pti的法向量,另一个是该点pti与其邻近一点N(pti)之间的点间向量,根据f2是否大于0,将f2分成2个间隔;式(5)中特征值f3是一点pti与其邻近点中一点N(pti)间的欧氏距离,根据阈值将其分成2个间隔;根据这三个特征值的间隔分类,我们可建立一个间隔数为4×2×2=16的直方图,对应地得到一个16维的特征向量,其中γ取值范围为点云的平均点间距离的5~10倍;步骤2.3:根据所述步骤2.2中三个特征值f1、f2、f3,定义idex=k1+k2·4+k3·4·2;若特征值f1落入[0,20]间隔中则对应地将k1记为1,若特征值f1落入(20,40]间隔中则对应地将k1记为2,若特征值f1落入(40,60]间隔中则对应地将k1记为3,若特征值f1落入(60,180]间隔中则对应地将k1记为4;若特征值f2的值小于0,则将k2记为1,否则记为0;若特征值f3的值大于则将k3记为1,否则记为0;根据idex的值确定N(pti)中一点属于直方图中的间隔位置,遍历一个点pti的所有邻近点N(pti),得到落入每个间隔中的邻近点N(pti)的数量,以N(pti)中落入每个间隔中的点数占其总数的百分比作为对应间隔的值,记此值为特征向量h1i;步骤2.4:根据所述步骤2.1至2.3,建立点集Pt和Qt中每个点的特征向量,得到点集Pt和Qt的特征向量集h1和h2;步骤3:采取特征向量间的欧氏距离作为比较准则,比较所述步骤2中获得的特征向量集h1和h2中的特征向量,在点集Qt中为点集Pt中每个点找到其初始匹配点:选取阈值ε2,特征向量的距离小于ε2时,该特征向量所对应点集Pt和Qt中的点作为初始匹配点对,记为:Matchdots={(si1,si2)|si1∈Pt,si2∈Qt,i=1,2,3···num(Matchdots)}其中num(Matchdots)是初始匹配点对的数量,ε2取0.05;步骤4:结合刚性距离约束条件,使用一种自适应的RANSAC算法获取精确匹配点对,具体步骤如下:步骤4.1:Matchdots中的任意两个点对和如果是正确的匹配点对...

【技术特征摘要】

【专利技术属性】
技术研发人员:达飞鹏陶海跻潘仁林刘健郭涛陈璋雯
申请(专利权)人:东南大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1