非镀铜焊丝制造技术

技术编号:865853 阅读:296 留言:0更新日期:2012-04-11 18:40
非镀铜焊丝,在平均电流为150~170A、尖端具有2~4mm的电流供应长度、尖端与母体材料之间的距离为20~24mm和焊丝弯曲的自由活套的直径为700~800mm的条件下,可进行CO↓[2]气体保护电弧焊,使得在电流为140~180A的条件下,焊丝和尖端间的电压降超过0.41V的概率大于70%,每10kg焊丝在其表面上负载0.25~1.5g的油,油是选自植物油、动物油、矿物油和合成油中的至少一种。焊丝在焊接时在它与尖端之间的滑动接触点能进行稳定的熔融,在连续焊接时没有突然固化,否则会在滑动接触点发生突然固化。焊丝有优异的焊丝供料性能和电弧稳定性,优异的焊接可加工性和最少的焊渣和烟气。

【技术实现步骤摘要】

本专利技术涉及一种实芯焊丝或粉芯焊丝形式的非镀铜焊丝
技术介绍
使用细焊丝(直径0.8~1.6mm)用于MAG焊(用CO2或CO2+Ar)和MIG焊已是惯例。在焊接时,以下列方式从线轴或包装桶供应焊丝。用供料装置的供料辊从线轴(或包装桶)中拉出焊丝的一端,然后推到供料辊后的管道电缆的衬管(liner)中。这样,焊丝通过该衬管到达放在焊接现场的焊炬的尖端。管道衬管是由螺旋缠绕的铜线形成的可弯曲导管。它通常长3~6m,有时长达10~20m。根据到焊接现场的距离选择足够的长度。即使管道电缆在窄的工作场所以Z字形或上下地放置,但是不管供料条件如何,都需要以恒定的速率稳定地输送焊丝。该供料性能是焊丝的重要特性之一。当用供料辊推到衬管中时,由于与衬管内部的接触摩擦,所以焊丝面对着阻力。如果管道衬管几乎是直的,该阻力不足以大得阻止供料。但是,如果管道电缆很多次弯曲或急剧弯曲或过分伸长,将有较大的阻力。该增大的阻力将超过供料能力,从而使供料性能变差。为了确保稳定的供料性能,需要降低来自管道衬管的阻力。降低供料阻力和提高供料性能的普通方式是向电弧焊丝表面涂敷润滑剂(液体或固体)。已经提出了下列几种改进焊丝的供料性能的方法。日本专利公开第Hei-08-157858号公报公开了将足量的油涂敷到焊丝表面上。日本专利公开第Hei-06-285678号公报公开了将固体润滑剂(例如MoS2)涂敷到焊丝表面上。日本专利公开第Sho-55-040068、Sho-56-144892、Hei-08-267284和2000-117486号公报公开了一种用焊丝表面的裂缝所持有的油润滑的方法,所述裂缝是在焊丝最终拉成之前当给焊丝退火降低其强度时产生的。日本专利公开第Sho-58-184095、Hei-08-99188和2004-001061号公报公开了一种用填充在焊丝表面上形成的凹槽中的粉末润滑的方法。上述现有技术主要用来降低焊接时焊丝受到的供料阻力。并且,日本专利公开第Hei-5-069181、2000-107881和2000-271780号公报了一种将电弧稳定剂填充到在焊丝表面上形成的凹槽中的技术。该技术用来改进电弧稳定性。
技术实现思路
不幸地,上述专利申请中公开的现有技术不能必然地促进普通电弧焊接实芯焊丝的焊丝供料性能和电弧稳定性,这是因为他们没有注意当焊丝摩擦尖端时发生的情况。因此,需要一种新的电弧焊丝,其可以容易地焊接,具有最少的焊渣和烟气。本专利技术人发现焊接电流从尖端流到焊丝的表面,从而在其滑动接触点局部地熔融焊丝,使焊丝在固化后粘结到尖端上。(此后将这种现象称为熔融粘结)。熔融粘结是决定焊丝供料性能的重要因素。事实上,熔融粘结增加了与管道衬管内部的摩擦,从而大大地增加供料阻力。如果供料阻力超过10kgf,供料辊不再能跟得上焊接辊,在辊和焊丝之间发生滑动。由于供料辊常常比焊丝硬,滑动刮擦焊丝表面,使碎片(金属粉末)累积在管道衬管或尖端中。累积的碎片阻碍焊丝顺利地供料。完成了本专利技术以解决上述问题。本专利技术的一个目的是提供一种具有下列特性的非镀铜焊丝在焊接时在尖端与焊丝表面之间的滑动接触点稳定熔融的能力;在连续焊接时没有突然固化,否则,在滑动接触点发生突然固化;优异的焊丝供料性能和电弧稳定性;良好的可加工性,具有最少的焊渣和烟气。本专利技术的一方面是旨在一种非镀铜焊丝,在平均电流为150~170A、尖端具有2~4mm的电流供应长度、尖端与母体材料之间的距离为20~24mm、并且由于焊丝弯曲而致的自由活套具有700~800mm直径的条件下,所述焊丝可以进行CO2气体保护电弧焊,使得在电流为140~180A的条件下,在所述焊丝和尖端之间的电压降超过0.41V的概率高于70%,每10kg所述焊丝在其表面上负载0.25~1.5g的油,所述油是选自植物油、动物油、矿物油和合成油中的至少一种。根据本专利技术的该方面,电压降超过0.41V的概率优选应高于80%,更优选高于90%。另外,根据本专利技术的该方面,优选每10kg的上述非镀铜焊丝在其表面或在其深100μm的表面层中负载0.01~0.25g的润滑剂,所述润滑剂是选自MoS2、WS2和ZnS中的至少一种。本专利技术该方面的焊丝在焊接时在它与尖端之间的滑动接触点进行稳定的熔融,在连续焊接时没有突然固化,否则在滑动接触点发生突然固化。焊丝具有优异的焊丝供料性能和电弧稳定性。它也具有优异的焊接可加工性和最少的焊渣和烟气。附图说明图1是表示测定熔融粘结力和供料阻力的设备的图。图2是表示用图1所示设备测定的焊接电流与供料阻力之间的关系的图。图3是表示电压降(Ec)与接触点温度(Tmax)之间的关系的图,该关系是在尖端温度(TERT)为300K、400K、500K、600K、700K、800K和900K时观察到的。图4(a)是尖端的截面图,图4(b)是配备有尖端的焊炬的截面图。图5(a)是表示对比例中观察到的焊接电流与电压降之间的关系的图。图5(b)是表示实施例中观察到的焊接电流与电压降之间的关系的图。图6(a)和6(b)是表示当焊接电流从140A变化到180A时在40A的范围内发生的电压降的概率密度分布的图。图6(a)和6(b)分别对应着图5(a)和5(b)。图7是焊接时的电压降(纵坐标)随直径被辊模降低的量(横坐标)所绘出的图。图8是表示电压降(纵坐标)和洗涤水的温度与洗涤时间的乘积(横坐标)之间的关系的图。图9是表示焊接时感应加热温度和电压降之间的关系的图。图10是表示ZnS的量(横坐标)与电压降(纵坐标)之间的关系的图。图11是表示实施例1中的焊接电流与供料阻力之间的关系的图。图12是表示实施例2中的焊接电流与供料阻力之间的关系的图。图13是表示实施例3中的焊接电流与供料阻力之间的关系的图。图14是表示实施例4中的焊接电流与供料阻力之间的关系的图。图15是表示实施例5中的焊接电流与供料阻力之间的关系的图。具体实施例方式下面参照附图更详细地描述本专利技术的实施方案。本专利技术是基于下述思想焊丝的供料阻力基本上来源于流过焊丝的焊接电流,不是简单地来源于焊丝与管道衬管之间的机械(摩擦)力。图1表示测定熔融粘结力和供料阻力的设备。用供料辊2将从卷轴1上解开的焊丝11供给管道衬管3(6m长)。焊丝通过管道衬管3,到达焊炬5。供料辊2固定在工作台4b上,工作台4b可以在框架4a上沿焊丝供料方向移动。顺便提及,管道衬管3缠绕一次使得经过它的焊丝受到机械曳力。管道衬管3的一端(接近供料辊2的一端)被支架8支撑,支架8固定在框架4a上。用闸流晶体管控制的焊接电源12(市场上可得到)通过焊炬5的尖端30和焊接平板6施加焊接电压。这样,在从焊炬5露出的焊丝11与焊接平板6之间发生电弧。当由供料辊2供应的焊丝11通过管道衬管3和焊炬5达到焊接平板6时受到供料阻力。该供料阻力本身表现为焊丝11推动可移动工作台4b的力。(换句话说,作用在供料辊2和支架8或框架4a上的力将可移动工作台4b推离供料辊2)。用放在可移动工作台4b和支架8或框架4a之间的测力仪9测定该力。这样测定的力代表供料阻力。连接到焊炬5上的第二个测力仪5a测定尖端30与焊丝11之间的熔融粘结力。测力仪5a在其中心具有一个孔以便焊丝11通过。焊丝11通过该孔到达尖端30。在该本文档来自技高网
...

【技术保护点】
一种非镀铜焊丝,在平均电流为150~170A、尖端具有2~4mm的电流供应长度、尖端与母体材料之间的距离为20~24mm、并且由于焊丝弯曲而成的自由活套的直径为700~800mm的条件下,所述非镀铜焊丝允许进行CO↓[2]气体保护电弧焊,使得在电流为140~180A的条件下,在所述焊丝和所述尖端之间的电压降超过0.41V的概率大于70%,并且每10kg的所述焊丝在其表面上负载0.25~1.5g的油,所述油是选自植物油、动物油、矿物油和合成油中的至少一种。

【技术特征摘要】
...

【专利技术属性】
技术研发人员:清水弘之横田泰之
申请(专利权)人:株式会社神户制钢所
类型:发明
国别省市:JP[日本]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利