【技术实现步骤摘要】
本专利技术属于智能图像分析领域,尤其是生物显微镜图像的高可靠性分类方法,具体涉及一种。
技术介绍
真核细胞具有很多被称为细胞器的组成部件,每一个细胞器都含有一个特定的蛋白质位置,因此,他们具有不同的生化属性。对于理解细胞的功能以及构造方式以及捕捉细胞的激活行为而言,确定其蛋白质的位置是至关重要的。研究表明,蛋白质的错位和很多疾病如代谢紊乱、癌症有着紧密的联系。因此,细胞蛋白质的检测分类对于早期疾病的诊断甚至药物的疗效监测都是一个很有效的方法。目前广泛使用的亚细胞蛋白质位置检测方法是荧光显微法。近年来,有很多基于荧光显微镜图像的亚细胞蛋白质位置检测方法。以正确的细胞图像分割为基础,显型检测问题就成为了一个多类的图像分类问题,包含两个主要的步骤特征表示和分类。一般来说,大部分的基于图像的细胞结构分析使用多种图像特征的组合来表示图像,例如形态学、边缘、纹理、几何特征、矩以及小波特征。最近,图像特征描述方法的进步产生了一些“拿来即用”的特征提取方法,这些方法可以直接应用于生物图像分析领域。这里使用曲线波变换(Curvelet Transform)、灰度共生矩阵的统计特征 ...
【技术保护点】
一种基于集成级联架构的生物显微图像分类系统,其特征在于所述系统包括若干层的集成分类器,所述集成分类器依层串联连接形成集成级联架构,每一层集成分类器由一个具有若干个基分类器的集成分类器构成,且每一层集成分类器对生物显微图像分类目标进行分类结果评判时,在当前层无法判定的分类目标将被拒绝分类而传递到下一层,由下一层的集成分类器进行分类处理,依次循环;当所有层的集成分类器均无法对生物显微图像分类目标进行自动分类时,交由人工专家系统进行分类。
【技术特征摘要】
1.一种基于集成级联架构的生物显微图像分类系统,其特征在于所述系统包括若干层的集成分类器,所述集成分类器依层串联连接形成集成级联架构,每一层集成分类器由一个具有若干个基分类器的集成分类器构成,且每一层集成分类器对生物显微图像分类目标进行分类结果评判时,在当前层无法判定的分类目标将被拒绝分类而传递到下一层,由下一层的集成分类器进行分类处理,依次循环;当所有层的集成分类器均无法对生物显微图像分类目标进行自动分类时,交由人工专家系统进行分类。2.根据权利要求1所述的基于集成级联架构的生物显微图像分类系统,其特征在于所述系统为两层的集成分类器串联连接而成,所述系统后端连接人工专家系统。3.根据权利要求2所述的基于集成级联架构的生物显微图像分类系统,其特征在于第一层集成分类器内构建有若干组分类专家,所述分类专家对导入的生物显微图像分类目标进行分类,并提交分类结果;每组分类专家内构建有若干个两类的支持向量机;每个支持向量机只根据生物显微图像分类目标的某种分类数据进行判别生物显微图像分类目标是否属于此类。4.根据权利要求2所述的基于集成级联架构的生物显微图像分类系统,其特征在于第一层集成分类器最终的分类结果由投票机制决定,投票结果应用拒绝分类判别函数,不满足判别条件的生物显微图像分类目标将不做分类而传递到下一层集成分类器。5.根据权利要求2所述的基于集成级联架构的生物显微图像分类系统,其特征在于第二层集成分类器由若干个多层感知器集合而成,每个多层感知器设置有I个隐藏层和I个含有K个输出节点的输出...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。