磁共振弹性成像中的弹性模量重建方法和系统技术方案

技术编号:8594167 阅读:194 留言:0更新日期:2013-04-18 07:24
本发明专利技术提供了一种磁共振弹性成像中的弹性模量重建方法和系统。所述方法包括:将成像组织的表面假设为平面域,通过有限体积元算法求解得到所述平面域中的位移初值,以及所述平面域中子区域的位移、所述位移对未知弹性模量的导数;通过所述有限体积元算法求解得到的位移和导数进行牛顿迭代得到弹性模量值,直至所述弹性模量值对应的最优化问题平方差小于预设的容忍误差,且达到预设的迭代次数时停止牛顿迭代;将所述最终迭代得到的弹性模量值组成所述成像组织的弹性模量分布。采用本发明专利技术能降低计算量。

【技术实现步骤摘要】

本专利技术涉及磁共振成像技术,特别是涉及一种磁共振弹性成像中的弹性模量重建方法和系统
技术介绍
弹性是人体组织物理性质中一种重要的机械力学参数,生物组织的弹性变化通常是与一定的病理现象紧密相关的,也就是说,病变组织和正常组织往往存在着弹性模量的差异,这一差异为临床上疾病的诊断提供了重要的参考信息。磁共振弹性成像(MagneticResonance Elastography,简称MREMtS—种无创成像方法,能够直观地显示和量化人体内部组织弹性,实现对人体内部组织的弹性成像,使得“影像触诊”成为了可能,在乳腺癌检测、肝硬化分期、动脉粥样硬化斑块、肌肉损伤、大脑疾病检测和射频消融等治疗和监控方面具有重要意义。磁共振弹性成像中弹性模量重建的方法是一个由质点位移图反推弹性分布的逆问题求解,因此,其本质上是不稳定的。为了避免该问题的病态性,弹性弹性模块重建方法将根据应用范围进行假设和简化。目前提出的弹性模量重建方法包括(I)局部频率估计(Local Frequency Estimation,简称LFE)算法及其变种,该算法将假设介质是均勻的和不可压缩的,并忽略波动中的衰减,机械波在介质中的传播方程因而简化为亥姆霍兹方程,以该方程为模型进行直接逆问题代数求解,但是局部频率估计算法存在着分辨率低、精度有限的缺陷,对尖锐的边界无法估计出精确的弹性系数,其假设也不适用于某些临床中;(2)基于有限元分析的弹性模量重建算法,计算出一幅质点位移图,通过最小化该质点位移图和磁共振质点位移图得到弹性系数分布图,与局部频率估计算法及其变种相比较,该方法对介质等没有做特定假设,对噪声的干扰不敏感,可产生较高分辨率的图像,但计算量非常庞大。
技术实现思路
基于此,提供一种能降低计算量的磁共振弹性成像中的弹性模量重建方法。此外,还有必要提供一种能降低计算量的磁共振弹性成像中的弹性模量重建系统。一种磁共振弹性成像中的弹性模量重建方法,包括如下步骤将成像组织的表面假设为平面域,通过有限体积元算法求解得到所述平面域中的位移初值,以及所述平面域中子区域的位移、所述位移对未知弹性模量的导数;通过所述有限体积元算法求解得到的位移和导数进行牛顿迭代得到弹性模量值,直至所述弹性模量值对应的最优化问题平方差小于预设的容忍误差,且达到预设的迭代次数时停止牛顿迭代;将所述最终迭代得到的弹性模量值组成所述成像组织的弹性模量分布。在其中一个实施例中,所述通过有限体积元算法求解得到所述平面域中的位移初值的步骤为根据设定的弹性模量初值通过有限体积元算法计算得到平面域中的位移初值。在其中一个实施例中,所述通过有限体积元算法求解得到所述平面域中子区域的位移、所述位移对未知弹性模量的导数的步骤包括将所述平面域划分为若干个子区域,并划分所述子区域为若干个单元,所述子区域之间和单元之间不存在重叠且任一单元的顶点均不在其它单元的边上,平面域边界的顶点为单元的顶点;在所述子区域中,以构成单元的顶点作为所述子区域的节点,并构建所述节点对应的有限体积元方程,并以所述位移初值作为有限体积元方程中的初值进行求解得到所述子区域对应的位移;通过所述求解得到的位移对包含了所述位移对未知弹性模量的导数的方程进行求解得到所述位移对未知弹性模量的导数,所述位移对未知弹性模量的导数是与位移所在的子区域相对应的。在其中一个实施例中,所述通过所述有限体积元算法求解得到的位移和导数进行牛顿迭代得到弹性模量值的步骤包括通过每一子区域所对应的位移和导数进行运算得到所述子区域对应的弹性模量改进值;根据所述弹性模量改进值以设定的弹性模量初值为起始进行牛顿迭代得到与当前迭代次数对应的弹性模量值。在其中一个实施例中,所述根据所述弹性模量改进值以设定的弹性模量初值为起始进行牛顿迭代得到与当前迭代次数对应的弹性模量值的步骤之后还包括 获取通过对所述成像组织进行磁共振成像所得到的位移图;根据当前迭代得到的弹性模量值和所述位移图得到最优化问题平方差;判断所述最优化问题平方差是否小于预设的容忍误差,若是,则进一步判断所述平面域中的每一单元是否均包含于至少一个子区域中,若是,则判断所述单元中的最小单元对应的迭代次数是否达至预设的迭代次数,若是,则停止进行牛顿迭代。在其中一个实施例中,还包括若判断到所述单元中的最小单元对应的迭代次数未达到预设的迭代次数,则返回所述通过有限体积元算法求解得到所述平面域中的位移初值,以及所述平面域中子区域的位移、所述位移对未知弹性模量的导数的步骤。一种磁共振弹性成像中的弹性模量重建系统,包括有限体积元运算模块,用于将成像组织的表面假设为平面域,通过有限体积元算法求解得到所述平面域中的位移初值,以及所述平面域中子区域的位移、所述位移对未知弹性模量的导数;迭代模块,用于通过所述有限体积元算法求解得到的位移和导数进行牛顿迭代得到弹性模量值,直至所述弹性模量值对应的最优化问题平方差小于预设的容忍误差,且达到预设的迭代次数时停止牛顿迭代;分布形成模块,用于将所述最终迭代得到的弹性模量值组成所述成像组织的弹性模量分布。在其中一个实施例中,所述有限体积元运算模块还用于根据设定的弹性模量初值通过有限体积元算法计算得到平面域中的位移初值。在其中一个实施例中,所述有限体积元运算模块包括划分单元,用于将所述平面域划分为若干个子区域,并划分所述子区域为若干个单元,所述子区域之间和单元之间不存在重叠且任一单元的顶点均不在其它单元的边上,平面域边界的顶点为单元的顶点;子区域位移求解单元,用于在所述子区域中,以构成单元的顶点作为所述子区域的节点,并构建所述节点对应的有限体积元方程,并以所述位移初值作为有限体积元方程中的初值进行求解得到所述子区域对应的位移;子区域导数求解单元,用于通过所述求解得到的位移对包含了所述位移对未知弹性模量的导数的方程进行求解得到所述位移对未知弹性模量的导数,所述位移对未知弹性模量的导数是与位移所在的子区域相对应的。在其中一个实施例中,所述迭代模块包括改进值运算单元,用于通过每一子区域所对应的位移和导数进行运算得到所述子区域对应的弹性模量改进值;弹性模量迭代单元,用于根据所述弹性模量改进值以设定的弹性模量初值为起始进行牛顿迭代得到与当前迭代次数对应的弹性模量值。 在其中一个实施例中,所述迭代模块还包括位移图处理单元,用于获取通过对所述成像组织进行磁共振成像所得到的位移图,并根据当前迭代得到的弹性模量值和所述位移图得到最优化问题平方差;判断单元,用于判断所述最优化问题平方差是否小于预设的容忍误差,若是,则进一步判断所述平面域中的每一单元是否均包含于至少一个子区域中,若是,则判断所述单元中的最小单元对应的迭代次数是否达到预设的迭代次数,若是,则停止进行牛顿迭代。在其中一个实施例中,所述判断单元还用于若判断到所述单元中的最小单元对应的迭代次数未达到预设的迭代次数,则通知所述有限体积元运算模块。上述磁共振弹性成像中的弹性模量重建方法和系统,将成像组织的表面假设为平面域,引入有限体积元算法以求解得到位移和该位移对未知弹性模量的导数,进而通过求解得到的位移和导数进行牛顿迭代得到弹性模量值,并在弹性模量值对应的最优化问题平方差小于预设的容忍误差,且达到预设的迭代次数时停止牛顿迭代,进而将最终迭代得到的弹性模量值组本文档来自技高网
...

【技术保护点】
一种磁共振弹性成像中的弹性模量重建方法,包括如下步骤:将成像组织的表面假设为平面域,通过有限体积元算法求解得到所述平面域中的位移初值,以及所述平面域中子区域的位移、所述位移对未知弹性模量的导数;通过所述有限体积元算法求解得到的位移和导数进行牛顿迭代得到弹性模量值,直至所述弹性模量值对应的最优化问题平方差小于预设的容忍误差,且达到预设的迭代次数时停止牛顿迭代;将所述最终迭代得到的弹性模量值组成所述成像组织的弹性模量分布。

【技术特征摘要】
1.一种磁共振弹性成像中的弹性模量重建方法,包括如下步骤将成像组织的表面假设为平面域,通过有限体积元算法求解得到所述平面域中的位移初值,以及所述平面域中子区域的位移、所述位移对未知弹性模量的导数;通过所述有限体积元算法求解得到的位移和导数进行牛顿迭代得到弹性模量值,直至所述弹性模量值对应的最优化问题平方差小于预设的容忍误差,且达到预设的迭代次数时停止牛顿迭代;将所述最终迭代得到的弹性模量值组成所述成像组织的弹性模量分布。2.根据权利要求1所述的磁共振弹性成像中的弹性模量重建方法,其特征在于,所述通过有限体积元算法求解得到所述平面域中的位移初值的步骤为根据设定的弹性模量初值通过有限体积元算法计算得到平面域中的位移初值。3.根据权利要求1所述的磁共振弹性成像中的弹性模量重建方法,其特征在于,所述通过有限体积元算法求解得到所述平面域中子区域的位移、所述位移对未知弹性模量的导数的步骤包括将所述平面域划分为若干个子区域,并划分所述子区域为若干个单元,所述子区域之间和单元之间不存在重叠且任一单元的顶点均不在其它单元的边上,平面域边界的顶点为单元的顶点;在所述子区域中,以构成单元的顶点作为所述子区域的节点,并构建所述节点对应的有限体积元方程,并以所述位移初值作为有限体积元方程中的初值进行求解得到所述子区域对应的位移;通过所述求解得到的位移对包含了所述位移对未知弹性模量的导数的方程进行求解得到所述位移对未知弹性模量的导数,所述位移对未知弹性模量的导数是与位移所在的子区域相对应的。4.根据权利要求3所述的磁共振弹性成像中的弹性模量重建方法,其特征在于,所述通过所述有限体积元算法求解得到的位移和导数进行牛顿迭代得到弹性模量值的步骤包括通过每一子区域所对应的位移和导数进行运算得到所述子区域对应的弹性模量改进值;根据所述弹性模量改进值以设定的弹性模量初值为起始进行牛顿迭代得到与当前迭代次数对应的弹性模量值。5.根据权利要求4所述的磁共振弹性成像中的弹性模量重建方法,其特征在于,所述根据所述弹性模量改进值以设定的弹性模量初值为起始进行牛顿迭代得到与当前迭代次数对应的弹性模量值的步骤之后还包括获取通过对所述成像组织进行磁共振成像所得到的位移图;根据当前迭代得到的弹性模量值和所述位移图得到最优化问题平方差;判断所述最优化问题平方差是否小于预设的容忍误差,若是,则进一步判断所述平面域中的每一单元是否均包含于至少一个子区域中,若是,则判断所述单元中的最小单元对应的迭代次数是否达至预设的迭代次数,若是,则停止进行牛顿迭代。6.根据权利要求5所述的磁共振弹性成像中的弹性模量重建方法,其特征在于,还包括若判断到所述单元中的最小单元对应的迭代次数未达到预设的迭代次数,则返回所述通过有限体积元算法求解得到所述平面域中的位移初值...

【专利技术属性】
技术研发人员:丁玉琼梁栋蔡葳蕤钟耀祖张丽娟刘新郑海荣
申请(专利权)人:深圳先进技术研究院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1