【技术实现步骤摘要】
本专利技术涉及,具体是建立相同的实测物理环境,对有限样本的受试数控系统开展无替换模式的定时截尾无间断连续运行试验,进行长时间批量化运行试验过程监控,采集运行数据、故障数据和维护数据等,根据所获得数据进行故障模式、影响及危害度分析(FMECA)、计算平均故障间隔时间(MTBF)、平均修复时间(MTTR)等数据。
技术介绍
数控系统和数控机床的可靠性水平,对于数控装备正常运行和数控生产厂商提高产品竞争力有着至关重要的作用。数控系统可靠性试验测试是在可靠性工程理论指导下,按国家相关标准和规范,结合数控机床应用特点,通过实际试验测试获取反映数控系统可靠性水平的平均故障间隔时间MTBF、故障信息以及运行状态等数据。为了充分测试和试验对比,除在加工现场对数控系统进行可靠性记录外,在实验室对有限样本进行室内无间断连续运行实验。数控系统可靠性实测数据,是现代数控机床设计开发、性能评价和生产应用的关键基础性数据。研究解决数控系统可靠性理论、测试评估方法和关键技术,准确、客观获得具有可比性的国产数控系统可靠性的第一手数据,分析国产数控系统及装备的可靠性现状和影响因素,对于实现数控系 ...
【技术保护点】
一种用于评估数控系统可靠性的试验方法,其特征在于:该方法步骤如下:试验开始,对数控系统施加电应力,整个循环内保持通电;通电后对数控系统进行按键测试,在0~360s内,完成按键测试;360s后对数控系统进行空载测试,不加任何负载,从360s到365s,5s内主轴转速由零加速到正转的额定转速,在额定转速下运行300s,从665s到675s,10s内主轴转速由额定转速减速到零,再由零加速到反转的额定转速,在额定转速下运行300s,从975s到980s,5s内主轴转速由额定转速减速到零;980s后对数控系统进行主轴加速测试,从980s到990s,10s内主轴转速由零加速到正转极速的 ...
【技术特征摘要】
1.一种用于评估数控系统可靠性的试验方法,其特征在于该方法步骤如下 试验开始,对数控系统施加电应力,整个循环内保持通电; 通电后对数控系统进行按键测试,在0~360s内,完成按键测试; 360s后对数控系统进行空载测试,不加任何负载,从360s到365s,5s内主轴转速由零加速到正转的额定转速,在额定转速下运行300s,从665s到675s,1Os内主轴转速由额定转速减速到零,再由零加速到反转的额定转速,在额定转速下运行300s,从975s到980s,5s内主轴转速由额定转速减速到零; 980s后对数控系统进行主轴加速测试,从980s到990s,10s内主轴转速由零加速到正转极速的90%,在该速度下运行5s ; 995s后对数控系统进行主轴极速测试,从995s到1000s,5s内主轴转速由正转极速的90%加速到正转极速,在极速下运行5s,从1005s到1010s,5s内主轴转速由极速减速到极速的90% ; 1010s后对数控系统进行主轴减速测试,在90%极速下运行5s,从1015s到1025s,10s内主轴转速由极速的90%减速到零; 1025s后对数控系统进行主轴加速测试,从1025s到1035s,10s内主轴转速由零加速到反转极速的90%,在该速度下运行5s ; 1040s后对数控系统进行主轴极速测试,从1040s到1045s,5s内主轴转速由反转极速的90%加速到反转极速,在极速下运行5s,从1050s到1055s,5s内主轴转速由极速减速到极速的90% ; 1055s后对数控系统进行主轴减速测试,在反转90%极速下运行5s,从1060s到1070s,10s内主轴转速由反转极速的90%减速到零; 1070s后对数控系统进行XY面内的直线...
【专利技术属性】
技术研发人员:彭翀,刘强,姚金勇,夏继强,高连生,郇极,
申请(专利权)人:北京航空航天大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。