本发明专利技术涉及一种LiDAR辅助下基于LEGION的高分辨率航空影像分割方法,包括以下步骤:利用LiDAR激光点云数据生成激光回波强度影像;激光回波强度影像与遥感影像全色波段进行配准;使用主成分分析法(PCA)对配准后的激光回波强度影像与遥感影像全色波段进行融合,获得融合影像;对融合影像进行LEGION图像分割。与现有技术相比,本发明专利技术利用主成分分析法(PCA)融合激光回波强度影像和高分辨率遥感影像全色波段,综合利用两种不同数据源作为LEGION分割方法的输入数据,较好保留了LiDAR数据和全色波段影像的特征,有效地提高了高分辨率遥感影像的分割精度。本发明专利技术综合使用LiDAR数据和遥感影像的信息来进行LEGION分割,实践证明,该技术够能有效地进行遥感影像分割,得到满意的分割效果。
【技术实现步骤摘要】
本专利技术涉及ー种高分辨率遥感影像分割方法,特别是涉及ー种LiDAR辅助下基于LEGION的高分辨率航空影像分割方法。
技术介绍
遥感技术已经被广泛地应用于土地利用调查、资源勘探、生态环境监测等诸多领域,对社会和经济发展发挥着重要的作用。随着航空、航天及传感器技术日新月异的发展,遥感影像的空间分辨率、时间分辨率和光谱分辨率不断提高。高空间分辨率遥感影像由于能够充分体现地物细节信息而备受关注。遥感影像分割是指将遥感影像中具有特殊涵义的不同区域区分开来,这些区域互不相交,每ー个区域都满足特定区域的一致性,它是高分辨率遥感影像应用中非常重要的环节,涉及了图像处理、模式识别和人工智能等诸多
数字图像处理、计算机图形学、模式识别、人工智能等学科的发展使得新的图像分割方法不断涌现,如聚类法、阈值法、边缘检测法、区域生长法、水平集方法、分水岭变换法、多尺度分割、神经网络分割等。上述分割方法各有优缺点,在实际应用中很难达到非常理想的效果。聚类法将图像内的像素划分到指定数目的类别之中,在此基础上将同一类别且相互联通的像素分割到同一个区域,但是类别数目的确定一般都是通过人工指定来实现的,此外由于没有考虑空间上的边缘信息和邻接信息,该方法经常会得出不符合人的视觉习惯的分割結果;边缘检测法在图像中存在噪声时,得到的边缘常常是孤立的或者分小段连续的,即使采用边缘闭合的方法进行处理,也很难得到精确边缘;区域增长法中合并和停止合并规则的制定会严重影响分割结果,往往会产生欠分割和过分割现象。其它分割方法在实际应用总也往往存在着各种问题,因此研究人员在改进现有技术的同时一直在探索新的分割方法。影像分割方法往往都是首先在普通的数字图像分割中得到广泛应用,然后引入到遥感影像分割中来。由于遥感影像数据量大、信息丰富等特征,新的分割方法应用到遥感影像分割中往往会出现很多难以解决的技术问题。随着人类对视觉机理研究的不断深入,基于生物视觉仿真和人工神经网络的图像分割方法也越来越成熟。局部兴奋全局抑制振荡网络(LocallyExcitatory GloballyInhibitory Oscillator Networks,简称LEGION)方法是一种基于生物视觉仿真的神经网络方法,它的基本原理是来自同一物体的刺激会引起检测这一物体的那些神经元发生同步神经振荡。在图像分割中,将ー个像素视作ー个神经元,首先选出ー批振荡发起点,随后在它的邻域内,将和它具有相同属性的像素也发起振荡,直到这一片区域的振荡达到协同,则协同振荡的这些像素就被划为同一块区域,而与发起点不相似的像素则被划在不同的区域内。这种思路逐步被模型化,1995年,David Terman,DeLiang Wang在期刊《Physica D Nonlinear Phenomena〉〉弟 81 卷发成 “Global competitionand local cooperation in anetwork of neural oscillators” 一文提出了全局竞争局部合作的神经元网络(Globalcompetition and local cooperationin a network of neural oscillators)模型;随后,两人在前面工作的基础上,提出了改进过后的“局部兴奋全局抑制振荡网络(LocallyExcitatoryGlobally Inhibitory Oscillator Networks, LEGION) ”模型。目前,LEGION方法只能应用于单波段灰度图像的分割,而遥感影像往往具有多个波段的信息,因此LEGION方法尚不能充分利用遥感影像所提供的信息来进行分割。鲁东旭在《基于LEGION的图像目标提取方法研究及其对彩色图像的实现》一文中给出了基于LEGION方法的彩色图像目标提取的方法,对彩色图像分别在RGB空间和HSV空间进行了分害わ并对目标提取结果进行了比较,实验表明提取的目标区域更符合人眼视觉习惯,效果较好。但是文中的方法对彩色图像各个波段分别进行LEGION分割,再将三个波段的运算结果进行综合显示,最后输出目标图像,这种方式没有真正解决综合使用多波段影像信息的问题,分割效果与单波段相比提升有限。为了解决上述问题,申请人于2010年12月2日申请了 “ー种基于Gram-Schmidt融合和LEGION的高分辨率遥感影像分割方法”(申请号201010572997. x),其将多波段的影像数据经过重采样、融合形成单波段数据,然后对单波段数据进行LEGION分割,该方法结合了数据融合与LEGION分割,使得LEGION分割方法能够应用于不同波段影像数据中,并且取得了较好的效果。LiDAR(激光雷达)即Light Detection And Ranging,大致分为机载和地面两大类,其中机载 激光雷达是ー种安装在飞机上的机载激光探测和测距系统,可以量测地面物体的三维坐标。机载LiDAR是ー种主动式对地观测系统,是九十年代初首先由西方国家发展起来并投入商业化应用的一门新兴技木。它集成激光测距技术、计算机技术、惯性测量单元(MU)/DGPS差分定位技术于一体,该技术在三维空间信息的实时获取方面产生了重大突破,为获取高时空分辨率地球空间信息提供了一种全新的技术手段。它具有自动化程度高、受天气影响小、数据生产周期短、精度高等特点。机载LiDAR传感器发射的激光脉冲能部分地穿透树林遮挡,直接获取高精度三维地表地形数据。机载LiDAR数据经过相关软件数据处理后,可以生成高精度的数字地面模型DTM、等高线图,具有传统摄影測量和地面常规测量技术无法取代的优越性,因此引起了测绘界的浓厚兴趣。机载激光雷达技术的商业化应用,使航测制图如生成DEM、等高线和地物要素的自动提取更加便捷,其地面数据通过软件处理很容易合并到各种数字图中。因此,航空LiDAR数据与遥感影像各有特点,两种数据结合的应用受到越来越多的关注。
技术实现思路
本专利技术要解决技术问题是克服现有技术缺点,提出ー种LiDAR辅助下基于LEGION的高分辨率航空影像分割方法。为了解决上述技术问题,本专利技术提出的技术方案是ー种LiDAR辅助下基于LEGION的高分辨率航空影像分割方法,包括如下步骤步骤1、激光回波強度影像生成——针对LiDAR点云数据中的每个LiDAR点,计算其多次回波強度均值作为该LiDAR点的回波強度,并对LiDAR点的回波强度数据重采样得到与遥感影像全色波段影像空间分辨率相同的栅格形式的激光回波強度影像;步骤2、影像配准——将激光回波強度影像和遥感影像全色波段影像进行配准;步骤3、PCA影像融合——使用主成分分析法对配准后的激光回波強度影像与遥感影像全色波段进行影像融合,获得融合影像;步骤4、LEGION图像分割——对步骤3中得到的融合影像用局部兴奋全局抑制振荡网络分割方法进行图像分割。本专利技术步骤2中,影像配准方法是在激光回波強度影像和遥感影像全色波段中选取多个同名地物点作为控制点,求得两影像之间的平移、旋转和仿射变换的多项式系数,通过图像重采样,获得具有相同地理坐标的配准后影像,配准误差在I个象元以内。本专利技术步骤3中,PCA影像融合的具体方法如下对配准的激光强度影像和遥感影像全色波段影本文档来自技高网...
【技术保护点】
一种LiDAR辅助下基于LEGION的高分辨率航空影像分割方法,包括如下步骤:步骤1、激光回波强度影像生成——针对LiDAR点云数据中的每个LiDAR点,计算其多次回波强度均值作为该LiDAR点的回波强度,并对LiDAR点的回波强度数据重采样得到与遥感影像全色波段影像空间分辨率相同的栅格形式的激光回波强度影像;步骤2、影像配准——将激光回波强度影像和遥感影像全色波段配准;步骤3、PCA影像融合——使用主成分分析法对配准后的激光回波强度影像与遥感影像全色波段进行融合,获得融合影像;步骤4、LEGION图像分割——对步骤3中得到的融合影像用局部兴奋全局抑制振荡网络分割方法进行图像分割。
【技术特征摘要】
1.一种LiDAR辅助下基于LEGION的高分辨率航空影像分割方法,包括如下步骤步骤1、激光回波强度影像生成——针对LiDAR点云数据中的每个LiDAR点,计算其多次回波强度均值作为该LiDAR点的回波强度,并对LiDAR点的回波强度数据重采样得到与遥感影像全色波段影像空间分辨率相同的栅格形式的激光回波强度影像;步骤2、影像配准——将激光回波强度影像和遥感影像全色波段配准;步骤3、PCA影像融合——使用主成分分析法对配准后的激光回波强度影像与...
【专利技术属性】
技术研发人员:程亮,汪业成,李满春,刘永学,李飞雪,陈振杰,黄秋昊,陈东,童礼华,
申请(专利权)人:南京大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。