纹波补偿电路和超级电容充放电装置制造方法及图纸

技术编号:8475852 阅读:242 留言:0更新日期:2013-03-24 21:45
本实用新型专利技术提供了一种纹波补偿电路和超级电容充放电装置。所述纹波补偿电路包括:电网侧充电电压采样单元,用于在为超级电容充电时采样电网侧输入的实时电压;充电电压比较单元,与所述电网侧充电电压采样单元连接,用于在为超级电容充电时比较该实时电压与预先设定的标准充电电压,得到充电电压校正信号;第一超级电容电压补偿单元,与所述充电电压比较单元连接,用于在为超级电容充电时根据该充电电压校正信号调整超级电容两端的电压。本实用新型专利技术取消了电网侧直流滤波大容量电容,并在为超级电容充电过程中减小由电网侧输入的脉动电压引起的超级电容两端输出纹波电压。(*该技术在2022年保护过期,可自由使用*)

【技术实现步骤摘要】

纹波补偿电路和超级电容充放电装置
本技术涉及电气技术,尤其涉及一种纹波补偿电路和超级电容充放电装置。技术背景超级电容作为一种新型的储能器件,它具有储存能量大、快速充放电等优点,满足轨道机车车辆在无电区运行的要求,越来越多地应用在轨道机车车辆上。超级电容显著改善轨道机车车辆的动力性能,提高制动能量回收率,达到节约能源和提高经济效益的目的。现有轨道机车车辆混合动力技术中,如图I所示,超级电容充放电装置(也称超级电容DC (直流)/DC斩波器)是能量转换的核心变流器,包括控制电路11、驱动电路12和主电路13。所述主电路13采用Buck-Boost(降压-升压)拓扑结构,所述驱动电路12向所述主电路13提供驱动脉冲,而所述控制电路11控制调整驱动脉冲的占空比。电能通过超级电容充放电装置可以在电网侧和超级电容之间双向传递。轨道机车车辆在有电网区域和车辆制动时,所述控制电路的控制端输入充电指令,超级电容充放电装置的降压斩波电路工作, 为超级电容充电;当车辆运行在无电网区域时,所述控制电路的控制端输入供电指令,超级电容充放电装置的升压斩波电路工作,超级电容为机车车辆的牵引变流器提供电源,保证车辆在无电区平稳运行。现有的超级电容充放电装置需要体积大、重量大的大容量直流滤波电容以在为超级电容充电时对电网输入侧输入的脉动电压进行滤波,这样造成超级电容充放电装置的体积大、结构笨重,在轨道机车车体上需要较大的空间尺寸;而如果在现有的超级电容充放电装置中取消该大容量直流滤波电容,则会在为超级电容充电过程中因为电网侧的输入电压的周期性脉动而造成超级电容两端很大的输出纹波电压。
技术实现思路
本技术提供一种纹波补偿电路和超级电容充放电装置,取消了电网侧直流滤波大容量电容,并在为超级电容充电过程中减小由电网侧输入的脉动电压引起的超级电容两端输出纹波电压。本技术提供了一种纹波补偿电路,应用于连接于电网侧和超级电容之间的超级电容充放电装置,包括电网侧充电电压采样单元,用于在为超级电容充电时采样电网侧输入的实时电压;充电电压比较单元,与所述电网侧充电电压采样单元连接,用于在为超级电容充电时比较该实时电压与预先设定的标准充电电压,得到充电电压校正信号;第一超级电容电压补偿单元,与所述充电电压比较单元连接,用于在为超级电容充电时根据该充电电压校正信号调整超级电容两端的电压,当该充电电压校正信号指示该实时电压大于该标准充电电压时控制调小超级电容两端的电压,当该充电电压校正信号指示该实时电压小于该标准充电电压时控制调大超级电容两端的电压。实施时,本技术所述的纹波补偿电路还包括超级电容充电电压采样单元,用于在为超级电容充电时采样超级电容两端的实时电压;超级电容电压比较单元,与所述超级电容充电电压采样单元连接,用于在为超级电容充电时比较该实时电压与标准超级电容电压,得到超级电容电压校正信号;第二超级电容电压补偿单元,与所述超级电容电压比较单元连接,用于在为超级电容充电时根据该超级电容电压校正信号调整超级电容两端的电压,当该超级电容电压校正信号指示该实时电压大于该标准超级电容电压时控制调小超级电容两端的电压,当该充电电压校正信号指示该实时电压小于该标准超级电容电压时控制调大超级电容两端的电压;该标准超级电容电压为当电网侧输入标准充电电压时超级电容两端的电压。实施时,本技术所述的纹波补偿电路还包括超级电容电压调整单元,分别与所述充电电压比较单元和所述超级电容电压比较单元连接,用于在为超级电容充电时根据所述充电电压校正信号和所述超级电容电压校正信号,将所述超级电容两端的电压调整为标准超级电容电压。实施时,所述超级电容电压调整单元,还与所述超级电容充放电装置的驱动电路连接,进一步用于在为超级电容充电时根据所述充电电压校正信号、所述超级电容电压校正信号、所述电网侧输入的实时电压和所述超级电容两端的实时电压,控制调整所述驱动电路输出的驱动脉冲的占空比,以将该超级电容两端的电压调整为标准超级电容电压。实施时,本技术所述的纹波补偿电路还包括电网侧放电电压采样单元,用于在超级电容向电网侧放电时采样电网侧的实时电压;供电电压比较单元,与所述电网侧放电电压采样单元连接,用于在超级电容向电网侧放电时比较该电网侧的实时电压和预先设定的标准供电电压,得到供电电压校正信号; 供电电压调整单元,与所述供电电压比较单元连接,用于在超级电容向电网侧放电时根据该供电电压校正信号将电网侧的电压调整为该标准供电电压。实施时,本技术所述的纹波补偿电路还包括超级电容放电电压采样单元,其用于在超级电容向电网侧放电时采样超级电容两端的实时电压;所述供电电压调整单元,还分别与所述超级电容放电电压采样单元和所述超级电容充放电装置的驱动电路连接,进一步用于在超级电容向电网侧放电时根据该供电电压校正信号以及该电网侧的实时电压,控制调整所述驱动电路输出的驱动脉冲的占空比,以将电网侧的电压调整为该标准供电电压。本技术还提供了一种超级电容充放电装置,包括主电路、控制电路和驱动电路;所述控制电路,与所述驱动电路连接,用于控制所述驱动电路向所述主电路提供驱动脉冲;所述主电路的第一端接入电网侧,所述主电路的第二端连接于超级电容的两端,其中, 所述控制电路包括上述的纹波补偿电路,所述纹波补偿电路分别与所述主电路的第一端和所述驱动电路连接。本技术所述的纹波补偿电路和超级电容充放电装置,取消了电网侧直流滤波大容量电容,从而主电路拓扑简单、体积小、重量轻,并且采用了纹波补偿电路以减小由于取消电网侧直流滤波大容量电容而导致的在为超级电容充电过程中电网侧输入的脉动电压引起的超级电容两端的输出纹波电压。附图说明图I为现有的超级电容充放电装置的结构框图;图2为本技术所述的超级电容充放电装置的主电路的一实施例的电路图;图3为本技术所述的纹波补偿电路的第一实施例的结构框图;图4为本技术所述的纹波补偿电路的第二实施例的结构框图;图5为本技术所述的纹波补偿电路的第三实施例的结构框图;图6为本技术所述的纹波补偿电路的第四实施例的结构框图;图7为本技术所述的纹波补偿电路的第五实施例的结构框图;图8为本技术所述的纹波补偿电路的第六实施例的结构框图;图9为本技术所述的超级电容充放电装置的一实施例的结构框图。具体实施方式如图2所示,本技术所述的超级电容充放电装置的主电路13的一实施例采用降压-升压斩波电路;该主电路13,第一端接入电网侧,第二端连接于超级电容EC ;该主电路13包括第一熔断器F1、第一滤波电感LI、第一电压传感器SV1、主接触器KM1、第一压敏器件VR1、突波电容Cl、第一绝缘栅双极型晶体管VT1、第二绝缘栅双极型晶体管VT2、第一储能电抗器L2、第二储能电抗器L3、第三绝缘栅双极型晶体管VT3、第四绝缘栅双极型晶体管VT4、第一电流传感器SCI、第二电流传感器SC2、第二滤波电感L4、滤波电容C2、第二熔断器F2、接触器KM2、第二电压传感器SV2和第二压敏器件VR2 ;所述第一熔断器F1,第一端与电网侧正直流电压输入端连接,第二端与所述第一滤波电感LI的第一端连接;所述第一滤波电感LI,第二端与所述主接触器KMl的第一端连接;所述第本文档来自技高网
...

【技术保护点】
一种纹波补偿电路,应用于连接于电网侧和超级电容之间的超级电容充放电装置,其特征在于,包括:电网侧充电电压采样单元,用于在为超级电容充电时采样电网侧输入的实时电压;充电电压比较单元,与所述电网侧充电电压采样单元连接,用于在为超级电容充电时比较该实时电压与预先设定的标准充电电压,得到充电电压校正信号;第一超级电容电压补偿单元,与所述充电电压比较单元连接,用于在为超级电容充电时根据该充电电压校正信号调整超级电容两端的电压,当该充电电压校正信号指示该实时电压大于该标准充电电压时控制调小超级电容两端的电压,当该充电电压校正信号指示该实时电压小于该标准充电电压时控制调大超级电容两端的电压。

【技术特征摘要】

【专利技术属性】
技术研发人员:李明裴春兴高峰李明高邵楠
申请(专利权)人:唐山轨道客车有限责任公司
类型:实用新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1