【技术实现步骤摘要】
本专利技术涉及信息安全
,特别涉及一种网络异常流量监测方法及装置。
技术介绍
网络流量异常指网络中流量不规则的显著变化,如网络短暂拥塞、分布式拒绝服务攻击(DDoS,Distributed Denial ofService)、大范围扫描等本地事件或者网络路由异常等全局事件。网络流量异常的监测和分析对网络安全应急响应部门而言非常重要,但是由于宏观流量异常监测比较困难,需要从大量高维的富含噪声的数据中提取和解释异常模式,使得对于网络异常的监测和分析仍然是一个极大的挑战。为此,国内外的学术机构和企业提出了多种监测方法。其中,基于阈值的监测方法,通过分析历史数据,建立正常的参考范围,超出此范围即判断为异常。这种方法操作简单,计算复杂度小。然而,作为一种实用的监测手段时,它需要结合网络流量特点进行修正和改进。基于统计的监测方法,通过建立统计学模型产生相应的监测方法,如一般似然比(GLR,generalized Likelihood Ratio)监测方法,它考虑两个相邻的< ...
【技术保护点】
一种网络异常流量监测方法,其特征在于,所述方法包括:捕获流经的网络数据流;根据网络数据流的产生时间,选择与当前时间最接近的n条网络数据流数据;所述n根据系统的计算能力确定;将捕获的n条网络数据流数据作为相关向量机的输入进行训练,建立数据模型;根据所述数据模型对当前的网络流量数据进行监测。
【技术特征摘要】 【专利技术属性】
1.一种网络异常流量监测方法,其特征在于,所述方法包括:
捕获流经的网络数据流;
根据网络数据流的产生时间,选择与当前时间最接近的n条网络数据流数据;所述n根
据系统的计算能力确定;
将捕获的n条网络数据流数据作为相关向量机的输入进行训练,建立数据模型;
根据所述数据模型对当前的网络流量数据进行监测。
2.如权利要求1所述的方法,其特征在于,所述将捕获的网络数据流数据作为相关向量
机的输入进行训练之前,还包括:
将所述网络数据流数据进行去噪处理。
3.如权利要求1所述的方法,其特征在于,所述将捕获的网络数据流数据作为相关向量
机的输入进行训练,建立数据模型,包括:
为相关向量机选择核函数,将捕获的网络数据流数据的特征向量映射到高维空间;
在高维空间内,为所述核函数选择相应参数,迭代求解最优的权重分布;
根据所述权重分布,预测数据,建立数据模型。
4.如权利要求3所述的方法,其特征在于,所述核函数包括但不限于高斯核函数或多项
式核函数。
5.如权利要求3所述的方法,其特征在于,所述为所述核函数选择相应参数,包括:
使用当前值x作为核函数参数,x取值0到无穷;通过核函数计算网络数据流数据之间
的相似性并记录所有相似度;
统计所有在预设区间内的相似度的个数,并记录此个数n;
增加核函数参数x=x+Δx,其中,所述Δx为核参数增量;
增加迭代次数i=i+1;
若在当前时间的n小于前一时间的n,则取前一时间的值x作为核函数参数;
输出所述x作为核函数参数。
技术研发人员:鲁松,邹昕,周立,张良,关建峰,许长桥,张能,张宏科,
申请(专利权)人:北京邮电大学,国家计算机网络与信息安全管理中心,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。