【技术实现步骤摘要】
上浆率是浆纱质量好坏的重要指标之一。上浆率过大或过小都将严重影响浆纱的质量,给织造生产带来不便,甚至造成大量的原料浪费。为了保证浆纱质量,首先需要对上·浆率进行检测,进而控制其达到规定指标。目前,国内外现存的对上浆率进行检测的方法都存在一定的缺陷时间上的滞后性、应用范围上的局限性、检测结果的不稳定性等,不能很好的实现对上浆率的在线检测。因此,对上浆率的实时检测进行研究是保证浆纱质量的前提,也具有很大的理论价值和实用价值。本专利技术通过对浆纱机理的深入调研,从离线建模的角度出发提出了上浆率在线检测的软测量建模方法。通过对浆纱过程的机理分析,得到影响上浆率的主要因素。并将这些因素作为输入,上浆率作为输出,使用ELM神经网络建立基本软测量模型。在此基础上,提供一种通过Learn++将多个不同参数的ELM神经网络基本模型进行融合的软测量建模方法。该方法能够有效地提高软测量预测精度,并实现在线实时测量,为确保浆纱质量、节约能源、降低成本提供有效途径。
技术介绍
目前实际生产中对上浆率的检测大都采用退浆法,这种方法通过对上浆后的纱线进行退浆、烘干并称重的方式得到上浆率,整个 ...
【技术保护点】
基于Learn++的浆纱过程上浆率软测量,其特征在于:使用Learn++方法将多个ELM神经网络软测量模型进行融合,得到高精度的上浆率软测量建模方法。
【技术特征摘要】
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。