一种基于Learn++的浆纱过程上浆率软测量制造技术

技术编号:8366190 阅读:187 留言:0更新日期:2013-02-28 03:28
本发明专利技术是一种基于Learn++的浆纱过程中浆纱机上浆率的软测量方法,通过对浆纱过程的机理分析,得到影响上浆率的主要因素。并将这些因素作为输入,上浆率作为输出,提出了一种基于Learn++的软测量建模新方法。Learn++算法保留了常用集成算法能够提高单一学习机性能的特点,此外还可以克服现有软测量学习方法中容易遗忘已学信息和由于重复使用原始训练数据造成时间和资源浪费的缺点,具有增量学习的能力。在建模过程中由于ELM与传统的神经网络算法相比具有学习速度快、简单易行,可以克服传统梯度算法常有的局部极小、过拟合和学习率选择不合适等问题,拥有更好的泛化能力等特点,将其选择作为基本弱学习机。该方法能够有效地提高软测量预测精度,并实现在线实时测量,为确保浆纱质量、节约能源、降低成本提供有效途径。

【技术实现步骤摘要】

上浆率是浆纱质量好坏的重要指标之一。上浆率过大或过小都将严重影响浆纱的质量,给织造生产带来不便,甚至造成大量的原料浪费。为了保证浆纱质量,首先需要对上·浆率进行检测,进而控制其达到规定指标。目前,国内外现存的对上浆率进行检测的方法都存在一定的缺陷时间上的滞后性、应用范围上的局限性、检测结果的不稳定性等,不能很好的实现对上浆率的在线检测。因此,对上浆率的实时检测进行研究是保证浆纱质量的前提,也具有很大的理论价值和实用价值。本专利技术通过对浆纱机理的深入调研,从离线建模的角度出发提出了上浆率在线检测的软测量建模方法。通过对浆纱过程的机理分析,得到影响上浆率的主要因素。并将这些因素作为输入,上浆率作为输出,使用ELM神经网络建立基本软测量模型。在此基础上,提供一种通过Learn++将多个不同参数的ELM神经网络基本模型进行融合的软测量建模方法。该方法能够有效地提高软测量预测精度,并实现在线实时测量,为确保浆纱质量、节约能源、降低成本提供有效途径。
技术介绍
目前实际生产中对上浆率的检测大都采用退浆法,这种方法通过对上浆后的纱线进行退浆、烘干并称重的方式得到上浆率,整个过程需要4-6个小时本文档来自技高网...

【技术保护点】
基于Learn++的浆纱过程上浆率软测量,其特征在于:使用Learn++方法将多个ELM神经网络软测量模型进行融合,得到高精度的上浆率软测量建模方法。

【技术特征摘要】

【专利技术属性】
技术研发人员:田慧欣
申请(专利权)人:天津工业大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1