【技术实现步骤摘要】
本专利技术涉及一种车辆行为的智能分析方法及系统,属于交通视频监控
技术介绍
目前车辆行为分析领域的大部分技术都是侧重于静态背景下的车辆行为分析,SP基于固定监控视频的车辆行为分析,相应的方法主要包括基于固定监控视频的车辆检测方法、基于Kalman滤波和MeanShift算法的车辆跟踪方法等。其中,基于固定监控视频的车辆检测方法是利用背景不变或变化缓慢等先验知识提取出监控场景中的背景信息,然后利用背景差等方法实现移动物体的提取,最后在提取的移动物体区域进行车辆判断,但该方法受限于监控视频,首先监控场景必须是固定不变或变化缓慢,无法应用于动态场景中,其次受光照、遮挡和阴影等影响,导致运动区域的分 割并不理想。在基于Kalman滤波和MeanShift算法的车辆跟踪方法中,Kalman滤波是在时序中通过预测、修正两个步骤不断迭代更新,使得系统噪声、观测噪声等引起的误差逐渐减少,以获得最佳的状态参数,MeanShift算法是采用颜色直方图等方法对所选择的目标区域进行建模,通过计算特征空间中每个特征值的概率来建立目标模型,然后在后续帧中可能存在目标的区域再计算特征空间的 ...
【技术保护点】
一种车辆行为的智能分析方法,其特征在于,包括:收集包含车辆的样本集和不包含车辆的背景样本集,并选择预定的Haar矩形特征通过AdaBoost算法进行离线训练,获得能够从复杂背景中检测出车辆的级联分类器;获取视频资源,通过所述级联分类器对所述视频资源进行检测标识出图像中的车辆;将所述标识的车辆作为有标识的正样本构造车辆检测器,然后通过光流法实现对每个车辆的跟踪,同时利用所述车辆检测器检测得到可能的车辆区域,通过所述跟踪和检测的结果确定车辆区域,再通过所述车辆区域更新所述车辆检测器,并确定每个车辆的位置,从而得到每个车辆的运动轨迹;检测出所述视频资源中的交通标志,并结合所述交通 ...
【技术特征摘要】
1.一种车辆行为的智能分析方法,其特征在于,包括 收集包含车辆的样本集和不包含车辆的背景样本集,并选择预定的Haar矩形特征通过AdaBoost算法进行离线训练,获得能够从复杂背景中检测出车辆的级联分类器; 获取视频资源,通过所述级联分类器对所述视频资源进行检测标识出图像中的车辆; 将所述标识的车辆作为有标识的正样本构造车辆检测器,然后通过光流法实现对每个车辆的跟踪,同时利用所述车辆检测器检测得到可能的车辆区域,通过所述跟踪和检测的结果确定车辆区域,再通过所述车辆区域更新所述车辆检测器,并确定每个车辆的位置,从而得到每个车辆的运动轨迹; 检测出所述视频资源中的交通标志,并结合所述交通标志对所述车辆的运动轨迹进行分析,确定所述车辆是否存在违规行为。2.根据权利要求I所述的方法,其特征在于,该方法还包括 根据所述车辆的运动轨迹的分析结果,对违规的车辆进行抓拍,并根据抓拍的图像记录相应的车辆信息。3.根据权利要求I所述的方法,其特征在于,将所述标识的车辆作为有标识的正样本构造车辆检测器,然后通过光流法实现对每个车辆的跟踪,同时利用所述车辆检测器检测得到可能的车辆区域,通过所述跟踪和检测的结果确定车辆区域,再通过所述车辆区域更新所述车辆检测器,并确定每个车辆的位置,从而得到每个车辆的运动轨迹包括 结合前一帧图像中的车辆区域,利用光流法实现对当前帧车辆的跟踪,得到的区域记为跟踪区域,并使用所述车辆检测器计算所述跟踪区域与跟踪车辆(即所述车辆检测器中的正样本)的匹配度; 利用所述车辆检测器对当前帧图像进行检测,获取与跟踪车辆匹配度较高的区域,记为检测区域; 比较所述跟踪区域和所述检测区域的匹配度,其中匹配度高于预定值的区域作为当前帧的车辆区域,所述车辆区域的中心位置作为车辆运动轨迹上的...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。