一种齿轮故障诊断平台及齿轮故障诊断方法技术

技术编号:8240838 阅读:245 留言:0更新日期:2013-01-24 21:12
本发明专利技术公开了一种齿轮故障诊断平台及齿轮故障诊断方法,在该平台上通过模拟齿轮故障采集振动信号,采用改进的局部保持投影算法与贝叶斯分类器结合,通过贝叶斯分类器正确分类率来判断模式识别的效果,通过振动加速度传感器测量齿轮故障的振动信号,先采用主成分分析,然后采用核变换、构造最邻近图、求映射空间等;根据多故障分类下贝叶斯分类器分类识别。与主成分分析、拉普拉斯算法、局部保持投影相比,改进的局部保持投影故障识别率大大提高。改进的局部保持投影算法与贝叶斯分类器结合的故障模式识别方法提高了故障识别率和精确度,提高了齿轮的故障模式识别的效果。本发明专利技术结构简单,为齿轮的故障识别提供了一个高精度的诊断平台。

【技术实现步骤摘要】

本专利技术涉及齿轮故障诊断
,特别涉及。
技术介绍
目前,齿轮故障诊断实验台是用来模拟齿轮故障的实验台,通过对齿轮加载,采集齿轮故障下的故障信号振动分析,建立诊断数据库,为齿轮故障诊断提供有效的依据。振动分析是在齿轮故障实验台上应用各种动态测试仪器采集、记录和分析齿轮中振动部件的振动时频域信号变化。振动分析技术通过对振动部位的时频域分析确定故障产生的部位。振 动信号处理主要包括时域分析、频域分析和时频域分析等。振动诊断的关键是怎样提取微弱的故障信息并进行故障模式识别。目前振动故障信息特征提取与模式识别方法有主成分分析、多维尺度变换、流形学习、线性判别、贝叶斯分类法、支持向量机等方法。由于齿轮故障的复杂性,通常要求对齿轮多类故障判别。然而,主成分分析等线性降维方法在处理非线性结构数据时效果不佳;非线性降维主要是通过局部保持映射等流形学习方法,这种方法只考虑高维数据的局部和全局结构,没有考虑样本数据点间的类别信息,是非监督分类。这些方法故障分类识别率不够理想。
技术实现思路
本专利技术的目的在于克服上述现有技术的缺点和不足,提供,提高诊断速度和精确度,提高了故障识别的能力。本专利技术本文档来自技高网...

【技术保护点】
一种齿轮故障诊断方法,其特征在于:包括下述步骤:1)主成分分析特征提取:数据采集卡在采样频率内,通过加速度传感器采集齿轮箱振动加速度信号,振动分析仪及计算机对该加速度信号分析,使用主成分分析方法的映射矩阵映射到线性子空间,线性子空间表示为:{x1,x2,x3,...,xm};2)核变换:将{x1,x2,x3,...,xm}通过核方法变换高维的核空间,并核空间的特征向量进行降维,实现有监督核局部保持映射算法,提取非线性特征,定义Ω是一种非线性映射,将原始样本数据空间RN映射到高维的核特征空间,ΨΩ是变换矩阵,在高维核空间中,使用局部保持映射思想对核空间的映射向量进行特征提取:ZΩ=(ΨΩ)TΩ(...

【技术特征摘要】

【专利技术属性】
技术研发人员:谢小鹏肖海兵冯伟黄博
申请(专利权)人:华南理工大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1