锆基金属玻璃多相复合材料及其制备方法技术

技术编号:8239423 阅读:176 留言:0更新日期:2013-01-24 19:34
本发明专利技术公开了一种锆基金属玻璃多相复合材料及其制备方法。本发明专利技术锆基金属玻璃多相复合材料的成分原子百分比表达式为:ZraTibCucNidBee,其中52≤a≤70,17≤b≤22,2≤c≤9,2≤d≤7,4≤e≤15,a+b+c+d+e=100。制备上述的锆基金属玻璃多相复合材料方法,包括以下步骤:选取块体金属玻璃合金体系,根据相选择原理,调整合金成分,使其在凝固过程中首先析出锆的固溶体第二相,并且固溶体第二相在随后冷却过程中析出高硬度的第三相;采用电弧熔炼的方法,把第一步得到的合金成分熔炼成母合金;母合金重新熔化,铜模重力铸造得到金属玻璃多相复合材料。本发明专利技术的锆基金属玻璃多相复合材料在提高金属玻璃塑性的同时,具有高强度,实现了强度和塑性的良好结合。

【技术实现步骤摘要】

本专利技术属于金属基复合材料技术,特别是一种。
技术介绍
块体金属玻璃(BMG)材料虽然具有高的断裂强度和硬度以及高的弹性应变极限,但是由于单相金属玻璃的塑性变形是通过高度局域剪切变形来实现,断裂前能够开动的剪切带数量十分有限,BMG在室温下会发生无宏观塑性变形的灾难性脆性断裂。因此,室温脆性问题已经发展成为BMG材料应用的重要瓶颈。为改善BMG材料的室温脆性,2000年美国Johnson研究小组首次通过在Zr-Ti-Cu-Ni-Be合金系中添加Nb合金化元素,制备出微米尺寸P-Zr(Ti)固溶体相增塑的 BMG复合材料,其拉伸塑性应变达到3%。随后,陈光等人通过对树枝晶β-ZrCTi)相固溶体进行球化处理,将BMG复合材料的拉伸塑性提高到6%以上(具有拉伸塑性的大尺寸金属玻璃复合材料及其制备方法,专利申请号为201110099685. 6)。虽然上述铸态内生固溶体增塑BMG复合材料增塑效果显著,但是由于塑性固溶体相的强度远低于金属玻璃基体,因此造成复合材料强度大幅度下降。
技术实现思路
本专利技术的目的在于提供一种新型锆基金属玻璃多相复合材料。该复合材料的结构特点是以BMG为基体,析出铸态内生固溶体第二相,并在固溶体第二相中析出细小、弥散分布的高硬度的第三相,从而产生沉淀强化。该复合材料在保持以往铸态内生固溶体增塑BMG复合材料增塑效果的同时,显著提高复合材料的强度。实现本专利技术目的的技术解决方案为一种错基金属玻璃多相复合材料,其合金成分的原子百分比表达式为ZraTibCueNidBee,其中52彡a彡70,17彡b彡22,2彡c彡9,2彡d彡7,4彡e彡15,a+b+c+d+e=100。该成分的金属玻璃复合材料具有多相复合结构,其金属玻璃基体上均匀分布着固溶体第二相β -Zr,并且固溶体第二相中沉淀出细小、弥散分布的高硬度的第三相《-Zr。—种制备上述的锆基金属玻璃多相复合材料的方法,包括以下步骤 第一步选取块体金属玻璃,根据相选择原理,调整合金成分ZraTibCueNidBee,其中52 彡 a 彡 70,17 彡 b 彡 22,2 彡 c 彡 9,2 彡 d 彡 7,4 彡 e 彡 15,a+b+c+d+e=100,使其在凝固过程中能够先析出锆的固溶体第二相,并且固溶体第二相在随后冷却过程中析出高硬度的第三相; 第二步采用电弧熔炼的方法,将合金原料熔炼成母合金; 第三步母合金重新熔化,铜模重力铸造得到锆基金属玻璃多相复合材料。第一步中所述的合金各组元纯度大于99. 5%。第三步中所述的锆基金属玻璃多相复合材料的压缩塑性最大达到10%。本专利技术与现有技术相比,其显著优点本专利技术首次开发出了一种新型锆基金属玻璃多相复合材料。该复合材料具有独特的结构特点,其在块体金属玻璃基体上析出铸态内生固溶体第二相,并在固溶体第二相中析出细小、弥散分布的高硬度的第三相,从而产生沉淀强化。因此,该复合材料在保持一般铸态内生固溶体增塑BMG复合材料增塑效果的同时,大幅度提高了复合材料的强度。此外,该复合材料随着β-Zr相和ω-Zr相的析出,剩余合金熔体具有很强的玻璃形成能力,能够获得最大直径35mm的锆基金属玻璃多相复合材料。附图说明图I是为本专利技术锆基金属玻璃多相复合材料制备流程图。图2是实施例I锆基金属玻璃多相复合材料显微结构和XRD图谱(a为显微组织图,b为XRD图谱)。图3是实施例I锆基金属玻璃多相复合材料的室温压缩曲线。 具体实施例方式下面结合附图对本专利技术做进一步详细描述 (I)合金成分设计 选择具有良好玻璃形成能力(GFA)的Zr-Ti-Cu-Ni-Be合金体系,根据相选择原理、二元合金相图,并对相的稳定性进行分析,从而确定合金成分,得到所需合金成分范围,ZraTibCucNidBee (原子百分比),其中52彡a彡70,17彡b彡22,2彡c彡9,2彡d彡7,4^ e ^ 15, a+b+c+d+e=100。(2)母合金熔炼 根据(I)成分设计所得到的不同合金元素之间的原子百分比换算出质量百分比,采用高纯金属组元配置出所需的合金。在高纯Ar气保护下,利用熔炼Ti或Zr纯金属去除腔内残余氧,采用水冷铜坩埚非自耗电弧熔炼设备熔制母合金。母合金多次熔炼的同时进行电磁搅拌以得到混合均匀的母合金扣锭。(3)材料成型 将母合金重熔后,通过铜模重力铸造或吹铸成形,其形状和尺寸可根据需要对铜模的内腔进行设计。(4)结构表征 利用X射线衍射仪(XRD)、差示扫描量热仪(DSC)、光学显微镜(OM)和电子扫描显微镜(SEM)等对制备的合金进行微观结构表征,并进一步对其进行力学性能表征,以确定具有最佳综合力学性能的合金成分。下面结合具体实施例和附图对本专利技术作进一步说明。实施例I (I)原材料的选用 本专利技术制备母合金锭选用的各金属组元的纯度如表1,合金成分为Zr60TI20Cu5 6Ni4.4Be10 (原子百分比)。表I制备母合金锭选用金属组兀的纯度(%)否全元素 |Zr |Ti |Cu |Ni |BeWk /% |99. 95 |99. 95 |99. 99 |99. 99 |99. 5(2)母合金锭的制备 在Ti吸气、高纯氩气保护条件下,用非自耗电弧熔炼炉熔制母合金扣锭,其具体程序如下 a、将金属原料的表面机械打磨去掉表面的氧化皮后,按照设计好的成分配比料备料;按照每锭80g左右的重量将配好的料放入熔炼炉内的水冷铜坩埚内,盖上炉盖抽真空至 2X KT3Pa ;向炉内充入一定量压力的高纯氩气(99. 99%),氩气压力范围为O. 4 0· 6MPa ; b、在熔制母合金锭之前,将用于吸气的Ti锭熔炼2 3遍; C、多道次熔炼母合金锭采用非自耗钨电极先将Zr、Ti、Cu、Ni、Be合金元素一起熔炼2 3遍,并施加电磁搅拌作用,得到混合均匀的母合金扣锭。熔炼时采用的电流为50(Γ650Α,电磁搅拌采用的电压为I 3V。(3)材料成型 将母合金扣锭置于水冷铜坩埚与水冷铜模紧密结合的成形系统中。系统抽真空至4 5 X KT4Pa ;电弧加热重熔后,在O. 6MPa的惰性气体(99. 999%的高纯氩)保护气氛下,依靠自身重力注入水冷铜模中,制备出所需直径的棒状试样。(4)结构和性能表征 图2是采用上述工艺条件制备的35mm直径Zr6tlTi2tlCu5.6Ni4.4Be1(l合金的微观组织及XRD图谱,可以看出,该复合材料的结构为块体金属玻璃基体上均匀分布着10 30μπι的β-Zr相,而在β-Zr相中又均匀弥散分布着细小的ω-Zr颗粒。图3为锆基金属玻璃多相复合材料室温压缩应力-应变曲线,实验条件为样品为03X 6mm柱状试样,实验温度为室温(25°C),压缩应变速率为ZXKT4iT1。力学性能测试结果表明所制备的复合材料屈服强度达到了 1450MPa,压缩塑性超过了 10%。事实证明,相比于以往内生固溶体相增塑金属玻璃复合材料,锆基金属玻璃多相复合材料在保持了良好塑性的基础上,显著提高材料的强度,实现了强度和塑性的良好结口 ο实施例2 采用与实施例I相同的方法,合金成分为Zr56.3Ti18.7Cu6.9Ni5.6Be12.5,制备了 25mm直径的锆基金属玻璃多相复合材料,屈服强度达到了 1580本文档来自技高网...

【技术保护点】
一种锆基金属玻璃多相复合材料,其特征在于所述复合材料的合金成分的原子百分比表达式为:ZraTibCucNidBee,其中52≤a≤70,17≤b≤22,2≤c≤9,2≤d≤7,4≤e≤15,a+b+c+d+e=100。

【技术特征摘要】

【专利技术属性】
技术研发人员:陈光成家林
申请(专利权)人:南京理工大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1