一种带防冻溶液再生热回收装置的空调热泵机组制造方法及图纸

技术编号:8231459 阅读:122 留言:0更新日期:2013-01-18 12:48
本实用新型专利技术公开一种带防冻溶液再生热回收装置的空调热泵机组,包括压缩机、蒸发式冷凝器、至少一个节流装置、至少一个蒸发器和防冻溶液再生热回收装置,压缩机一端的接口分别连接蒸发式冷凝器的气体管和蒸发器的气体管,压缩机另一端的接口同时分别连接蒸发式冷凝器的气体管和蒸发器的气体管,节流装置所在的连接管道分别连接蒸发器的液体管与蒸发式冷凝器的液体管;蒸发式冷凝器的冷却水系统设有防冻溶液再生热回收装置.本防冻溶液再生热回收装置实现了溶液再生和溶液再生能源的回收利用,避免了防冻溶液被冻结,为热泵空调机组通过蒸发式冷凝器从室外空气中取热实现高效、连续、稳定供热提供了技术保障。(*该技术在2022年保护过期,可自由使用*)

【技术实现步骤摘要】

本技术涉及空调用的热泵机组
,特别涉及一种带防冻溶液再生热回收装置的空调热泵机组
技术介绍
采用蒸发式冷凝器向室外空气中取热并为冬季的热泵空调机组提供热能,是实现高效、稳定供热的重要途径,与空气源热泵相比,其换热效率高,节省换热器材料,可实现连续供热,具有显著的节能减排前景。但是,目前常用的空调热泵机组中,当蒸发式冷凝器中的载冷剂(冷却水)温度低于0°c时,载冷剂就会冻结成冰,蒸发式冷凝器及其连接的部件可能存在被膨胀裂损的危险,这时若能得到合适浓度的防冻溶液,可以保证各部件在低温下正常工作。此外,在热泵工况时,蒸发式冷凝器向空气取热后,空气的温度降低,会使空气中的水分冷凝,此部分冷凝水进入防冻溶液中,又将导致防冻溶液稀释,随着防冻溶液浓度降低,防冻溶液的冰点会提高,如不及时提高防冻溶液的浓度(或称溶液再生),蒸发式冷凝器的溶液池、水泵等部件仍有膨胀裂损风险。为解决这个问题,目前多将被稀释的溶液添加高浓度的防冻剂,将溢流出来的被稀释的防冻溶液存放在室内或地下的溶液储存罐内,待室外温度升高后,再将稀溶液泵入蒸发式冷凝器内,利用空气中的能量实现溶液再生,该方法必然需要很高浓度的防冻剂、大容量的浓溶液与稀溶液储存罐,导致防冻剂使用量大、溶液储存空间庞大、初投资极高和增加防冻剂的运行费用,极大地限制了蒸发式冷凝器作为热泵取热装置在低温地区的适用地域。
技术实现思路
本技术的目的在于克服现有技术的不足,提供一种安全可靠、可稳定提高防冻溶液浓度,并且能实现热量回收的带防冻溶液再生热回收装置的空调热泵机组,该机组的使用有效降低制冷空调系统的初投资和运行成本。本技术的技术方案为一种带防冻溶液再生热回收装置的空调热泵机组,包括压缩机、蒸发式冷凝器、至少一个节流装置、至少一个蒸发器和防冻溶液再生热回收装置,压缩机一端的接口分别连接蒸发式冷凝器的气体管和蒸发器的气体管,压缩机另一端的接口同时分别连接蒸发式冷凝器的气体管和蒸发器的气体管,节流装置所在的连接管道分别连接蒸发器的液体管与蒸发式冷凝器的液体管;蒸发式冷凝器的冷却水系统设有防冻溶液再生热回收装置;所述防冻溶液再生热回收装置包括再生容器和水蒸汽冷凝热回收器,再生容器与水蒸汽冷凝热回收器之间通过水蒸汽通道连接;再生容器内设有加热器,再生容器还分别通过低浓度防冻溶液通道和高浓度防冻溶液通道与蒸发式冷凝器连接;水蒸汽冷凝热回收器内设有第一热交换器,第一热交换器上分别设有热交换介质进口和热交换介质出口,热交换介质进口通过第一热泵阀与节流装置连接,热交换介质出口通过第二热泵阀与压缩机制热进口连接,热交换介质为机组制冷剂;水蒸汽冷凝热回收器上设有冷凝水出口。所述蒸发器有多个时,多个蒸发器并联设置,多个蒸发器并联后与节流装置连接。所述蒸发器有多个时,多个蒸发器并联设置,各蒸发器的进口处分别设置一个节流装置。所述高浓度防冻溶液通道上设有溶液泵。作为一种优选方案,防冻溶液再生热回收装置还包括第二热交换器,第二热交换器上设有低浓度溶液进口和高浓度溶液出口,低浓度防冻溶液通道穿过第二热交换器内部并与低浓度溶液进口相通,高浓度防冻溶液通道穿过第二热交换器内部并与高浓度溶液进口相通。低浓度防冻溶液与高浓度防冻溶液在第二热交换器中进行初级热交换,回收了高浓度防冻溶液的显热并初步加热低浓度防冻溶液,可有效提高再生容器内的再生热回收效率。所述再生容器和水蒸汽冷凝热回收器设于同一中空筒体或箱体内,既可节省设备 占地,提高装置的紧凑度,同时也可以减少散热,有效提高再生热回收率;为了使再生容器内的热回收效率更为显著,第一热交换器下方设有水盘,第二热交换器的低浓度溶液进口处设有第三热交换器,第三热交换器通过冷凝水管道与水盘连接,冷凝水管道穿过第三热交换器且末端为冷凝水出口,低浓度防冻溶液通道依次穿过第二热交换器和第三热交换器,且低浓度防冻溶液通道的末端为低浓度溶液进口。通过水盘接收水蒸汽冷凝热回收器内的冷凝水,并将冷凝水的余热用于低浓度防冻溶液的预热,实现对低浓度防冻溶液的二级预热,可更显著地提高再生容器内的再生热回收效率;此外,还可通过对低浓度防冻溶液通道、高浓度防冻溶液通道、冷凝水通道和水蒸汽通道的排布设计,实现以下热交换低浓度防冻溶液-高浓度防冻溶液、冷凝水-低浓度防冻溶液、水蒸汽-低浓度防冻溶液。所述低浓度防冻溶液通道和高浓度防冻溶液通道并联设于再生容器上,低浓度防冻溶液通道上设有低浓度溶液阀门,高浓度防冻溶液通道上设有高浓度溶液阀门。所述压缩机一端的接口同时为制冷进口和制热进口,压缩机另一端的接口同时为制冷出口和制热出口 ;其中,制冷出口与蒸发式冷凝器气体管连接的管路上设有第一制冷阀,制冷进口与蒸发器气体管连接的管路上设有第二制冷阀,制热出口与蒸发器气体管连接的管路上设有第三热泵阀,制热进口与蒸发式冷凝器气体管连接的管路上设有第四热泵阀。所述压缩机一端的接口处设有第一二位三通换向阀,压缩机另一端的接口设有第二二位三通换向阀,第一二位三通换向阀的两个出口分别通过管道与蒸发式冷凝器气体管和蒸发器气体管连接,第二二位三通换向阀的两个进口分别通过管道与蒸发式冷凝器气体管和蒸发器气体管连接。所述压缩机上同时作为制冷出口和制热出口的接口处设有四通换向阀,四通换向阀的另外三个接口分别通过管道与蒸发式冷凝器气体管、蒸发器气体管和压缩机上同时作为制冷进口和制热进口的接口连接。上述装置结构中,所述加热器采用电阻式、电磁式、蒸汽式、燃气式、燃油式或油热式的加热器,加热器的热源为电、燃气、燃油、烟气余热、压缩机排气或热泵机组制取的热水。所述第一热交换器、第二热交换器和第三热交换器均可采用翅片管式、管壳式、套管式或板式的换热器。所述低浓度溶液阀门、高浓度溶液阀门、第一制冷阀、第二制冷阀、第一热泵阀、第二热泵阀第三热泵阀和第四热泵阀均可采用电动阀或手动阀。所述第一二位三通换向阀和第二二位三通换向阀均可采用电动或气动的二位三通换向阀。本带防冻溶液再生热回收装置的空调热泵机组使用时,其原理是压缩机、蒸发式冷凝器、节流装置、蒸发器同时形成制冷循环模式和制热循环模式;当作为制冷循环模式时,溶液由压缩机的制冷出口送出,依次经过蒸发式冷凝器、节流装置和蒸发器,最后由压缩机的制冷进口进入压缩机,从而形成制冷循环模式;当作为制热循环模式时,溶液由压缩机的制热出口送出,依次经过蒸发器、节流装置和蒸发式冷凝器,最后由压缩机的制热进口进入压缩机,从而形成制热循环模式。其中,防冻溶液再生热回收装置的原理是蒸发式冷凝器内的低浓度防冻溶液从低浓度防冻溶液通道进入再生容器,通过加热器对低浓度防冻溶液进行加热蒸发,产生的高温水蒸汽从水蒸汽通道送至水蒸汽冷凝热回收器,加热蒸发后得到的高浓度防冻溶液从高浓度防冻溶液通道送出;水蒸汽在水蒸汽冷凝热回收器内通过第一热交换器与热交换介质(机组制冷剂)进行热交换,水蒸汽被冷却后从冷凝水出口送出。本技术相对于现有技术,具有以下有益效果I、实现了溶液再生,避免了防冻溶液被冻结从蒸发式冷凝器到再生容器中的低浓度防冻溶液经过加热器的加热作用,蒸发出高温水蒸汽,使稀溶液转变成浓溶液后返回蒸发式冷凝器,保证了蒸发式冷凝器中的防冻溶液浓度保持在合适水平,持续满足系统运行的防冻需求。2、实现了溶本文档来自技高网...

【技术保护点】
一种带防冻溶液再生热回收装置的空调热泵机组,其特征在于,包括压缩机、蒸发式冷凝器、至少一个节流装置、至少一个蒸发器和防冻溶液再生热回收装置,压缩机一端的接口分别连接蒸发式冷凝器的气体管和蒸发器的气体管,压缩机另一端的接口同时分别连接蒸发式冷凝器的气体管和蒸发器的气体管,节流装置所在的连接管道分别连接蒸发器的液体管与蒸发式冷凝器的液体管;蒸发式冷凝器的冷却水系统设有防冻溶液再生热回收装置;所述防冻溶液再生热回收装置包括再生容器和水蒸汽冷凝热回收器,再生容器与水蒸汽冷凝热回收器之间通过水蒸汽通道连接;再生容器内设有加热器,再生容器还分别通过低浓度防冻溶液通道和高浓度防冻溶液通道与蒸发式冷凝器连接;水蒸汽冷凝热回收器内设有第一热交换器,第一热交换器上分别设有热交换介质进口和热交换介质出口,热交换介质进口通过第一热泵阀与节流装置连接,热交换介质出口通过第二热泵阀与压缩机制热进口连接,热交换介质为机组制冷剂;水蒸汽冷凝热回收器上设有冷凝水出口。

【技术特征摘要】

【专利技术属性】
技术研发人员:李志明石文星李先庭张勇王宝龙谭栋
申请(专利权)人:广州市华德工业有限公司
类型:实用新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1