火灾识别方法和系统技术方案

技术编号:8131385 阅读:200 留言:0更新日期:2012-12-27 03:53
本发明专利技术公开了一种火灾识别方法,包括:建立用于识别是否发生火灾的火灾识别数学模型;通过若干个探测器采集探测区域内的烟雾浓度值和温度值;将采集的所述烟雾浓度值和温度值作为所述火灾识别数学模型的输入参数值,并根据其输出参数值获取火灾识别结果;如果所述火灾识别结果为发生火灾,则输出报警信号。此外,还公开了一种火灾识别系统。本发明专利技术区别于传统的阈值算法和趋势算法,通过建立的火灾识别数学模型,可根据探测区域内的烟雾场和温度场分布及其发展趋势来识别火灾。克服了误报率、漏报率过高和可靠性、灵敏度过低的问题。

【技术实现步骤摘要】

本专利技术涉及火灾识别

技术介绍
在火灾的燃烧过程中产生的气体、气溶胶、烟雾、火焰和大量热量,统称为火灾参量。通过对火灾参量的测定可用来识别和探测是否发生火灾。目前的火灾识别和探测技术由于光照条件、气流变化、场地环境和移动物体等因素的影响,存在一定的弊端,例如误报率高和可靠性低。无火灾环境下出现误报警的原因是复杂的,可能是硬件的损坏,也可能是环境条件的变化和虚假的干扰等。并且,由于火灾探测器(包括感温、感烟、感光等)一般通过简单的阈值判断和趋势算法对探测信号进行处理,随着传感器安装数量的增多,漏报概率将大大增加。在火灾过程中,可燃物的性质、火源功率、探测空间大小和探测环境都直接 影响探测空间温度、烟雾浓度的大小和变化量。所以在火灾探测器采用简单阈值判断和趋势算法来识别火灾时,如阈值设置过低则导致误报率高,如阈值设置过高则导致灵敏度低,漏报的情况随之增加。因此,迫切需要提供一种火灾识别方法,解决目前所存在的误报率和漏报率过高以及可靠性和灵敏度过低的问题。
技术实现思路
基于此,本专利技术提供了一种火灾识别方法和一种火灾识别系统。一种火灾识别方法,包括以下步骤建立用于识别是否发生火灾的火灾识别数学模型,其中,所述火灾识别数学模型的输入参数包括烟雾浓度和温度,输出参数包括火灾识别结果;通过若干个探测器采集探测区域内的烟雾浓度值和温度值;将采集的所述烟雾浓度值和温度值作为所述火灾识别数学模型的输入参数值,并根据其输出参数值获取火灾识别结果;如果所述火灾识别结果为发生火灾,则输出报警信号。与一般技术相比,本专利技术火灾识别方法建立用于识别是否发生火灾的火灾识别数学模型,以探测器收集的探测区域内的烟雾浓度和温度信息作为火灾识别数学模型的输入信息,获取火灾识别结果。区别于传统的阈值算法和趋势算法,通过建立的火灾识别数学模型,可根据探测区域内的烟雾场和温度场分布及其发展趋势来识别火灾。本专利技术使火灾识别更加智能化,抗干扰能力强,克服了误报率、漏报率过高和可靠性、灵敏度过低的问题。—种火灾识别系统,包括模型建立模块、米集模块、识别模块和报警模块;所述模型建立模块,用于建立用于识别是否发生火灾的火灾识别数学模型,其中,所述火灾识别数学模型的输入参数包括烟雾浓度和温度,输出参数包括火灾识别结果;所述采集模块,用于通过若干个探测器采集探测区域内的烟雾浓度值和温度值;所述识别模块,用于将采集的所述烟雾浓度值和温度值作为所述火灾识别数学模型的输入参数值,并根据其输出参数值获取火灾识别结果;所述报警模块,用于当所述火灾识别结果为发生火灾时,输出报警信号。与一般技术相比,本专利技术火灾识别系统建立用于识别是否发生火灾的火灾识别数学模型,以探测器收集的探测区域内的烟雾浓度和温度信息作为火灾识别数学模型的输入信息,获取火灾识别结果。区别于传统的阈值算法和趋势算法,通过建立的火灾识别数学模型,可根据探测区域内的烟雾场和温度场分布及其发展趋势来识别火灾。本专利技术使火灾识别更加智能化,抗干扰能力强,克服了误报率、漏报率过高和可靠性、灵敏度过低的问题。附图说明图I是本专利技术火灾识别方法的流程示意图; 图2是适用本专利技术的一个火灾识别系统的示意图;图3是本专利技术火灾识别系统的结构示意图。具体实施例方式为更进一步阐述本专利技术所采取的技术手段及取得的效果,下面结合附图及较佳实施例,对本专利技术的技术方案,进行清楚和完整的描述。请参阅图1,为本专利技术火灾识别方法的流程示意图。本专利技术火灾识别方法包括以下步骤SlOl建立用于识别是否发生火灾的火灾识别数学模型,其中,所述火灾识别数学模型的输入参数包括烟雾浓度和温度,输出参数包括火灾识别结果;作为其中一个实施例,所述火灾识别数学模型的输入参数还包括时间信息和空间信息。作为其中一个实施例,可采用支持向量机建立所述火灾识别数学模型。设线性可分的火灾训练样本集为{xpyj e RdXR1, i = 1,2,…,n,其中,Xi为d = 6维(分别为烟雾浓度、温度、时间、三维空间)的输入向量,Yi e {+1,-1}为对应输出(是否发生火灾),η是样本数,ω为权值,b为阈值,满足Yi [ (ω Xxi) +b] ^ I, i = I, . . . , η此时火灾识别(实际为分类问题)的分类间隔等于2/| I ω I I,使该分类间隔最大实际等效为使I I ω I I最小,求最优分类面的问题等效为一个二次规划问题,采用Lagrange乘子法求解可得到ω* = O^yiXi S 二--ω* · Xj i=l >’i上式中,<为求解出的Lagrange乘子,基于以上最优分类面的参数,可以建立如下最优分类函数(即火灾识别数学模型) η/(-'*) = Sgn [Qf*v, (xxx^ + b* _ /=1 _考虑到上面的约束条件限制过大,导致错分的可能性增大,可以在上述式子中引入一个松弛变量Ii > O来解决这个问题。显然Ii的大小决定了火灾识别的灵敏度。同时考虑到火灾现场的复杂性,本专利技术实例引入了核函数把非线性问题转换为线性问题,并选用高斯径向基核函数,最终采用的火灾识别模型可为本文档来自技高网...

【技术保护点】
一种火灾识别方法,其特征在于,包括以下步骤:建立用于识别是否发生火灾的火灾识别数学模型,其中,所述火灾识别数学模型的输入参数包括烟雾浓度和温度,输出参数包括火灾识别结果;通过若干个探测器采集探测区域内的烟雾浓度值和温度值;将采集的所述烟雾浓度值和温度值作为所述火灾识别数学模型的输入参数值,并根据其输出参数值获取火灾识别结果;如果所述火灾识别结果为发生火灾,则输出报警信号。

【技术特征摘要】
1.一种火灾识别方法,其特征在于,包括以下步骤 建立用于识别是否发生火灾的火灾识别数学模型,其中,所述火灾识别数学模型的输入参数包括烟雾浓度和温度,输出参数包括火灾识别结果; 通过若干个探测器采集探测区域内的烟雾浓度值和温度值; 将采集的所述烟雾浓度值和温度值作为所述火灾识别数学模型的输入参数值,并根据其输出参数值获取火灾识别结果; 如果所述火灾识别结果为发生火灾,则输出报警信号。2.根据权利要求I所述的火灾识别方法,其特征在于,所述火灾识别数学模型的输入参数还包括时间信息和空间信息。3.根据权利要求I所述的火灾识别方法,其特征在于,所述建立用于识别是否发生火灾的火灾识别数学模型的步骤,包括以下步骤 采用支持向量机建立所述火灾识别数学模型。4.根据权利要求I所述的火灾识别方法,其特征在于,在所述建立用于识别是否发生火灾的火灾识别数学模型的步骤之后,包括以下步骤 选取模拟火灾实验数据或者典型火灾数据库数据作为训练样本,对所述火灾识别数学模型进行训练。5.根据权利要求I所述的火灾识别方法,其特征在于,在所述根据其输出参数值获取火灾识别结果的步骤之后,包括以下步骤 如果所述火灾识别结果为发生火灾,则将与该火灾识别结果对应的所述烟雾浓度值和温度值作为训练样本,对所述火灾识别数学模型进行训练。6.根据权利要求I所述的火灾识别方法,其特征在于,所述通过若干个探测器采集探测区域内的烟雾浓度值和温度值的步骤,包括以下步骤 将探测区域划分为若干个子区域; 在各个子区域内分别通过烟雾探测器和温度探测器对烟雾浓度值和温度值进行采集。7.根据权利要求I所述的火灾识别方法,其特征在于,所述建立用于识别是否发生火灾的火灾识别数学模型的步骤,包括以...

【专利技术属性】
技术研发人员:尹焕平
申请(专利权)人:广州中国科学院工业技术研究院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1