基于FPA非制冷红外热成像系统的菲涅耳透镜光学读出方法技术方案

技术编号:8021276 阅读:274 留言:0更新日期:2012-11-29 03:36
本发明专利技术是基于FPA非制冷红外成像系统的菲涅耳透镜光学读出方法,这种方法应用于基于FPA的非制冷红外热成像系统中,代替传统的光学读出方法。该方法利用菲涅尔透镜对从焦平面阵列反射的光束的相位和振幅调制而改善系统的成像性能。当环境中无热辐射物体时,从FPA反射的光束经菲涅耳透镜成像,作为“基准”像;当加入热物体时,FPA上的微悬臂梁受热偏转,从FPA反射的光束位相发生变化,菲涅耳透镜对反射光束进行位相和振幅调制,使在光电探测器上像的强度变化,经图像处理后得到热物体的可见光图像。该方法利用菲涅耳透镜设计自由度大、材料广泛、轻薄等特点,与传统光学元件组合,达到改善成像质量,减小光学读出系统尺寸和系统重量的目的。

【技术实现步骤摘要】

本专利技术是基于FPA红外热成像系统的一种菲涅耳透镜光学读出方法。该读出方法针对目前成像系统结构过于庞大和复杂的问题,专利技术出的一种光学读出方法。此种方法可代替传统的光学读出方法进行成像,使得系统更加轻便,设计自由度更大,能够减小光学读出系统的像差,提高系统成像质量以及探测灵敏度。■
技术介绍
目前,非制冷红外成像技术光学读出方法发展迅速,新型的光学读出方法采用的焦平面阵列由双材料微悬臂梁组成,通过红外透镜的红外光被双材料微悬臂梁探测单元吸收后转化为热能,由于双材料的热致效应,微悬臂梁发生形变,该形变可以通过各种光学方 法读出,从而得到被测热物体的温度分布及可见光图像。由于采用的微悬臂梁阵列制作简单,且不需要对每个单元设计并制作复杂的读出电路,因此该方法基本解决了电学读出方法的诸多问题。相比于传统的电学读出方法,光学读出方法能够很好地实现探测单元与基底间的热隔离,对等量的热辐射具有更高的温升。目前常用的光学读出方法有原子力显微镜(AFM)光学读出方法、干涉式读出方法、针孔滤波读出方法、光学衍射读出方法和改进的非相干空间滤波方法等等,下面简单介绍这几种光学读出方法。一.四单元读出方法“四单元读出方法”是以标准原子力显微镜(AFM)原理为背景的读出系统,该方法利用光点的移动检测微悬臂梁受热后的偏转角,并利用特定的光学读出系统获得热图像。红外辐射需通过一个机械斩光器,然后经过红外透镜聚焦在微悬臂梁探测器上。机械斩光器能提高锁相放大器的参考频率,提高信噪比。利用激光照射微悬臂梁,再利用四单元位置敏感探测器(PSD)确定微悬臂梁的位置,并将信息存储在计算机中,计算机利用存储数据重构一个8位的图像阵列,灰度级为256。在重建的图像中,形变量最小的微悬臂梁呈黑色,形变量最大的微悬臂梁呈白色。这种系统灵敏度高,但只采用一个微悬臂梁作为探测单元,需要扫描机构按序扫描各个像元,因此该方法会导致光线间的互扰。另外,该方法对热信号响应时间较长,难以进行实时观察,且测量面离焦平面非常近,很难对整个焦平面空间进行检测。二.光学干涉读出方法这种方法是基于迈克尔逊干涉原理的光学读出方法。从FPA反射的光到达分光镜后,一部分通过分光镜传播到反射面上,另一部分经反射镜的反射垂直向下射向被测面,被测面和反射镜反射的光再次相遇发生干涉,经成像透镜在光电探测器上成像。当环境中加入热辐射物体时,FPA上的微悬臂梁发生偏转,则从FPA反射的光束方向发生变化,导致在光电探测器上灰度值发生变化,通过帧间图像的相减便获得红外热图像。这种方法检测的是微悬臂梁受热后产生的离面位移,光学分辨率为四分之一个波长。该系统精度非常高,易于阵列成像,但是对抗震性要求也很高,需要采用共光路干涉光路,并且参与干涉的平面(参考平面和变形平面)需保持十分近的距离,但这会使光在两个面上多次反射,使系统的信噪比很难提高。该光学系统的动态范围窄,为了满足光强信号和微悬臂梁离面位移的单调关系,需要限制微悬臂梁的离面位移在半个波长以内。三.针孔滤波读出系统 针孔滤波读出系统通过红外透镜将红外光聚焦在FPA上,FPA封装在真空腔内,光源为可见光LED。LED发出的光经准直元件后成为平行光,该平行光照射在FPA上并经FPA反射,从FPA反射的光束通过第一个成像透镜成为会聚光,并会聚在焦面上的针孔附近。因为每个反射小单元的偏转角度不同,会使这些光线在针孔板上的会聚位置不同,只有当会聚位置与针孔位置对应时,这些光线才能够通过针孔及第二个成像透镜。当这些光线通过第二个成像透镜后,成为平行光并在C⑶上成像。当环境中没有红外热辐射物体时,各个悬臂梁小单元的偏转角度相同,因此准直后的平行光经FPA反射后具有相同的方向,通过第一个成像透镜后会聚焦在一起,各小单元焦点的位置全部重叠,使(XD接收到的FPA上每个小单元的反射光经过针孔后的光强相同,因此输出图像各个位置的灰度值相同。当环境中存在热物体时,由于各个小单元受热不同而偏转不同的角度,导致经FPA反射的光束的方向不同,使得该光束通过第一个成像透镜聚焦后焦点不重合,因此通过针孔的光强发生变化,最终导致CCD上接收到的光强发生变化,得到灰度值不同的图像输出。这种方法的探测灵敏度不仅与探测目标黑体的温度有关,还与LED的发光强度和CCD的灵敏度有关。该方法无需隔振,易实现阵列测量。但是该方法的空间分辨率和探测灵敏度无法同时提高,空间分辨率不够且图像不清晰。四.光学衍射读出系统光学衍射读出系统采用的是光栅衍射型微悬臂梁阵列,该微悬臂梁主要包含红外吸收面、叉指形梳齿结构及悬臂梁支腿。叉指形梳齿结构位于微悬臂梁的侧面或末端,作为衍射光栅,其中一排梳齿和支腿相连,由于支腿是由热导率小的半导体材料SiC或SiNx组成,因此这排梳齿受红外辐射的影响十分小,并称为固定梳齿。光栅的另一排梳齿和微悬臂梁的红外吸收面相连,红外吸收面是由热膨胀系数低的SiC或SiNx和热膨胀系数高的金属Al或Au构成,当微悬臂梁吸收红外热辐射时发生弯曲,使排梳齿相对于固定梳齿发生纵向及横向的相对位移,因此称排梳齿为可动梳齿。该系统的衍射主要来自于梳齿间的纵向相对位移。当焦平面受到准直激光的照射,光栅的纵向位移会引起衍射光强的变化,衍射光强与微悬臂梁的纵向位移相对应。将经过焦平面阵列的衍射光进行傅里叶变换,其中第一个透镜做傅里叶正变换,将不同方向的衍射光通过透镜后变为焦平面上的一系列孤立的频谱亮斑,仅让+1级亮斑通过,+1级亮斑包含了整个焦平面阵列的信息。第二个透镜进行傅里叶逆变换,重现红外图像。这种方法能避免电学读出方法引线互联和反射法的顺序扫描问题,不需抗震。但是该方法的微悬臂梁制作工艺复杂,受光栅衍射周期的限制,目前只能做尺寸大于50 iimX 50 iim的阵列,且阵列的红外吸收面积较小,影响探测灵敏度。五.刀口滤波系统刀口滤波系统属于部分相干光的光学衍射读出系统,该系统利用部分相干光的优点,能够很好地抑制相干噪声,能够将物体的光强分布直接作为输入信号,能够处理彩色图像信息,有效地提高系统的信噪比。刀口滤波方法的原理是假设悬臂梁的反光面是规则的矩形板,这些矩形板排列起来成为了二维光栅结构。利用可见光对矩形板进行照明,每个矩形板会形成相同的衍射谱,然而当每个矩形板受热不同会偏转不同的角度,因此每个小单元的衍射谱会在谱平面上错开一个小位移。刀口边缘位于没有热物体时谱的中心处。当悬臂梁偏转角偏大时,衍射光大部分进入不通光区域,透过刀口的光亮变小;而当悬臂梁偏转微小角偏小时,衍射光的大部分仍在通光区域内,透光的光量减小程度不大,因此微悬臂梁单元在C⑶像面上对应区域的光强发生变化,通过处理可以的得到热物体的可见光图像。但是该方法容易受环境的影响,尤其是震动和空气扰动。并且由于FPA制造工艺的限制,谱分散情况较为严重,从而降低了系统的探测灵敏度。综上所述,传统的光学读出方法都能够一定程度上提高系统的探测灵敏度,但系统结构较大,每个方法都有其自身的不足,对成像系统的工作环境要求较高,且成像质量需进一步提闻。菲涅尔透镜属于二元光学中的一种,二元光学是光学与微电子技术相互渗透、交叉形成的学科。相比于传统光学,二兀光学在实现光波变换上具有更多卓越的功能。其主要特点包括能够得到任意要求的波前,本文档来自技高网...

【技术保护点】
一种基于FPA非制冷红外热成像系统的菲涅耳透镜光学读出方法,其特征在于:FPA非制冷红外热成像菲涅耳光学读出方法的读出步骤为:点光源发出的光经过准直透镜后变为平行光射出,平行光经过FPA的反射,到达菲涅尔透镜,菲涅耳透镜波带半径的奇数序或偶数序各自发出的次波到达参考点的光程差为波长的整数倍,光波经过衍射到达该点时引起的光振动的位相相同,光强加强,达到衍射成像的目的,FPA反射回的光经过菲涅耳透镜多相位阶数浮雕结构的衍射,成像在光电探测器上,获得焦平面阵列受热偏转前后的信息。

【技术特征摘要】

【专利技术属性】
技术研发人员:惠梅丁琳王文娟赵跃进
申请(专利权)人:北京理工大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1