一种冷轧带钢平直度的鲁棒优化控制系统技术方案

技术编号:7547772 阅读:213 留言:0更新日期:2012-07-13 19:45
本实用新型专利技术公开一种冷轧带钢平直度的鲁棒优化控制系统,该系统包括轧机本体,平直度控制子系统和平直度测量装置;所述平直度控制子系统,用于在线收集冷轧带钢轧制中的过程参数,完成板形目标平直度与所述平直度测量装置反馈的带材平直度之间偏差的正交参数化功能,并实时计算出冷轧带钢平直度的鲁棒优化控制的执行器调节量;所述轧机本体,用于根据所述鲁棒优化控制的执行器调节量,改变轧机传动装置的实际位置以调整轧机工作辊的辊缝分布,从而控制带钢平直度。采用本实用新型专利技术的系统,能够提高所述控制系统的稳定性,并降低控制算法的在线计算量。(*该技术在2021年保护过期,可自由使用*)

【技术实现步骤摘要】

本技术涉及板带钢材轧制中的板形控制技术,尤其涉及一种冷轧带钢平直度的鲁棒优化控制系统
技术介绍
平直度是衡量冷轧带钢产品合格与否的一项主要技术指标。良好的带钢平直度控制可以减少单边浪、双边浪、中间浪等板形缺陷的发生,提高带钢产品的板形质量。常见的多辊轧机中的板形控制系统主要是通过改变工作辊辊隙分布的方式来控制带钢的平直度。实现带钢平直度高精度控制的必要条件是能够在线实时连续地获取带材的实际平直度分布参数,然后计算目标平直度分布与实际平直度分布之差来获取平直度偏差分布,再利用其计算各板形控制执行器的在线调节量,然后根据执行器的调节量来改变轧机传动装置的实际位置以影响工作辊辊缝分布,从而达到控制带钢平直度的目的。如,现有可检索到的对带钢平直度进行控制的技术1) M. J. Grimble, and J. Fotakis, “The Design of Strip Shape Control Systems for Sendzimir Mills,,,IEEE Transactions on Automatic Control, Vol. 27, No. 3,1982 ;2) S. R. Duncan, J. M. Allwood, and S. S. Garimella. “The analysis and Design of Spatical Control Systems in Strip Metal Rolling,,, IEEE Transactions on Control Systems Technology, Vol. 6, No. 2,1988 ;3) J. V. Ringwood, “Shape Control Systems for Sendzimir Steel Mills,,, IEEE Transactions on Control Systems Technology, Vol. 8, No. 1, 2000 ;4) Μ. Jelalu, U. Muller, A. Wolff, and W. Ungerer, "Advanced Control Strategies for Rolling Mills,,, Metallurgical Plants and Technology International, No. 3,2001;以及5)专利技术专利ZL200510028316. 2,名称为“克服复合浪形的轧制方法”的技术。上述各种技术的共同特点是对获取的轧制过程参数,如传动装置对平直度的作用功效和平直度偏差分布,不经过任何技术处理而简单地利用它们进行直接求逆运算来获取执行器调节量。该方法通常称为“最小平方法”、“剩余平方最小化法”、“左伪逆矩阵”等。使用上述基于对板形控制执行器调控功效系数矩阵的Gram矩阵进行直接求逆的传统带钢平直度控制方法,通常会遇到如下问题对轧机模型直接求逆可引起控制系统对模型误差敏感,可能导致若干传动装置的不稳定性或不必要的移动。所有的传动装置被同时使用时,由于不理想的解耦运算,这些传动装置并不是被独立控制的,这意味着一个传动装置的小的移动可能引起其它传动装置的大的移动,并且使这些传动装置陷入极限状态。为了解决上述问题,授权号为CN100556571C、名称为“优化带材轧制中平整度控制的方法及装置”的专利技术专利中使用对在线轧机模型的奇异值分解(SVD)来对整个带材的当前平直度偏差分布进行参数化,然后设计线性多变量控制器来计算各传动装置的调节量。 由于其控制模式是通过使用轧机矩阵的奇异值分解导出的,这样就获得了更加稳定和强健的控制性能。但,该方法却显著增加了板形控制的在线计算量。
技术实现思路
有鉴于此,本技术的主要目的在于提供一种冷轧带钢平直度的鲁棒优化控制系统,采用改进的控制架构,以提高控制系统的稳定性,并降低控制算法的在线计算量。为达到上述目的,本技术的技术方案是这样实现的一种冷轧带钢平直度的鲁棒优化控制系统,包括轧机本体,还包括平直度控制子系统和平直度测量装置;所述平直度控制子系统、轧机本体和平直度测量装置依次相连,所述平直度测量装置与所述平直度控制子系统通过反馈线相连接;其中所述平直度控制子系统,用于在线收集冷轧带钢轧制中的过程参数,完成板形目标平直度与所述平直度测量装置反馈的带材平直度之间偏差的正交参数化功能,并实时计算出冷轧带钢平直度的鲁棒优化控制的执行器调节量;所述轧机本体,用于根据所述鲁棒优化控制的执行器调节量,改变轧机传动装置的实际位置以调整轧机工作辊的辊缝分布,从而控制带钢平直度。其中,所述轧机本体包括轧机传动装置和轧机出口板形。所述平直度控制子系统主要包括板形目标平直度模板库、误差参数化模块和多变量解耦控制模块;其中所述板形目标平直度模板库,用于存储工艺人员在带钢轧制前设定的板形目标平直度模板;所述误差参数化模块,用于收集冷轧带钢轧制中的过程参数,对板形控制执行器的调控功效矩阵进行正交分解,板形仪在线实时采集带钢平直度分布信号,计算目标平直度与实时采集平直度之差即平直度偏差,并依据正交分解结果对该平直度偏差进行参数化;所述多变量解耦控制模块,用于利用多变量解耦控制算法计算一个控制周期内的各执行器的调节量。所述平直度控制子系统进一步包括冷轧带钢轧制过程参数模块和以太网通信模块。本技术所提供的冷轧带钢平直度的鲁棒优化控制系统,具有以下优点通过采用先进的控制架构,使用矩阵正交分解技术对板形控制执行器调控功效系数矩阵进行分解,再利用分解后的结果对平直度偏差分布进行参数化,接下来利用多变量解耦控制器实时计算出各执行器的在线调节量,最后再根据执行器的调节量来改变轧机传动装置的实际位置。与现有技术相比,本技术的方法既增加了控制系统的稳定性又减少了控制算法在线计算量。附图说明图1为本技术冷轧带钢平直度的鲁棒优化控制系统的架构(含轧机本体中其它组件)示意图;图2为冷轧带钢平直度的鲁棒优化控制方法流程图;图3为实施例中某一控制周期内各执行器调控功效系数图;图4为实施例中某一控制周期内带钢平直度偏差分布图;图5为本技术控制方法与相关控制方法效果对比图。具体实施方式以下结合附图及本技术的实施例对本技术的系统及方法作进一步详细的说明。图1为本技术冷轧带钢平直度的鲁棒优化控制系统的架构(含轧机本体中其它组件)示意图,也示出了其与轧机本体中其它组件的关系。其工作辊可水平移动的六辊冷轧机板形调控手段主要有倾辊、工作辊正负弯辊、中间辊正弯辊和中间辊窜辊。其中,中间辊窜辊是根据带钢宽度进行预设定,调整原则是将中间辊辊身边缘与带钢边部对齐,亦可由操作方考虑添加一个修正量,调到位后保持位置不变。因而在线调节的板形控制执行器主要有倾辊、工作辊正负弯辊、中间辊正弯辊三种。如图1所示,该冷轧带钢平直度的鲁棒优化控制系统,包括轧机本体、平直度控制子系统和平直度测量装置;所述平直度控制子系统、轧机本体和平直度测量装置依次相连, 所述平直度测量装置与所述平直度控制子系统通过反馈线相连接。其中所述平直度控制子系统,用于在线收集冷轧带钢轧制中的过程参数,完成板形目标平直度与所述平直度测量装置反馈的带材平直度之间偏差的正交参数化功能,并实本文档来自技高网
...

【技术保护点】

【技术特征摘要】

【专利技术属性】
技术研发人员:解相朋赵菁
申请(专利权)人:中冶南方工程技术有限公司
类型:实用新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术