基于鲁棒策略的双层地铁交通流优化控制方法技术

技术编号:15378378 阅读:136 留言:0更新日期:2017-05-18 21:52
本发明专利技术涉及一种基于鲁棒策略的双层地铁交通流优化控制方法,包括如下步骤:先根据各个列车的计划运行参数,生成轨道交通网络的拓扑结构图;再基于拓扑结构图,分析列车流的可控性和敏感性;再根据各个列车的计划运行参数,生成多列车无冲突运行轨迹;再在每一采样时刻,基于列车当前的运行状态和历史位置观测序列,对列车未来某时刻的行进位置进行预测,然后建立从列车的连续动态到离散冲突逻辑的观测器,将连续动态映射为离散观测值表达的冲突状态;当系统有可能违反交通管制规则时,对地铁交通混杂系统的混杂动态行为实施监控,为控制中心提供告警信息;最后当告警信息出现时,采用自适应控制理论方法对列车运行轨迹进行鲁棒双层规划,并将规划结果传输给各列车。

Optimal control method of double deck subway traffic flow based on robust strategy

The invention relates to a method of robust optimization control strategy of double deck subway based on traffic flow, which comprises the following steps: firstly according to the plan of operation parameters of each train, the topology generation of rail transit network; then the topology based on the controllability and sensitivity analysis of train flow; then according to the plan of operation parameters of each train. Generation of multi train collision free trajectory; and then at each sampling time, the train running condition and historical position observation sequence based on the prediction of future position at a time of the train, and then establish the dynamic train from continuous to discrete conflict logic observer, continuous dynamic mapping for conflict state expression of discrete observations when the system value; a possible violation of traffic rules, monitoring the implementation of the hybrid dynamic behavior of metro traffic control for hybrid systems. The center provides alarm information. Finally, when the alarm information appears, the adaptive control theory is adopted to make a robust bilevel programming of the train trajectory, and the results are transmitted to each train.

【技术实现步骤摘要】
基于鲁棒策略的双层地铁交通流优化控制方法本申请是申请号为:201510150696.0,专利技术创造名称为《一种地铁交通流优化控制方法》,申请日为:2015年3月31日的专利技术专利申请的分案申请。
本专利技术涉及一种地铁交通流优化控制方法,尤其涉及一种基于鲁棒策略的双层地铁交通流优化控制方法。
技术介绍
随着我国大中城市规模的日益扩大,城市交通系统面临着越来越大的压力,大力发展轨道交通系统成为解决城市交通拥塞的重要手段。国家“十一五”规划纲要指出,有条件的大城市和城市群地区要把轨道交通作为优先发展领域。我国正经历一个前所未有的轨道交通发展高峰期,一些城市已由线的建设转向了网的建设,城市轨道交通网络已逐步形成。在轨道交通网络和列车流密集的复杂区域,仍然采用列车运行计划结合基于主观经验的列车间隔调配方式逐渐显示出其落后性,具体表现在:(1)列车运行计划时刻表的制定并未考虑到各种随机因素的影响,容易造成交通流战术管理拥挤,降低交通系统运行的安全性;(2)列车调度工作侧重于保持单个列车间的安全间隔,尚未上升到对列车流进行战略管理的宏观层面;(3)列车调配过程多依赖于一线调度人员的主观经验,调配时机的选择随意性较大,缺乏科学理论支撑;(4)调度人员所运用的调配手段较少考虑到外界干扰因素的影响,列车调配方案的鲁棒性和可用性较差。已有文献资料的讨论对象多针对长途铁路运输,而针对大流量、高密度和小间隔运行条件下的城市地铁交通系统的科学调控方案尚缺乏系统设计。复杂路网运行条件下的列车协调控制方案在战略层面上需要对区域内交通网络上单列车的运行状态进行推算和优化,并对由多个列车构成的交通流实施协同规划;在预战术层面上通过有效的监控机制调整交通网络上部分区域的关键运行参数来解决拥塞问题,并保证该区域中所有列车的运行效率;在战术层面上则根据关键运行参数来调整相关列车的运行状态,获取单列车轨迹优化方案,将列车的间隔管理从固定的人工方式转变为考虑列车性能、调度规则和外界环境等因素在内的可变的“微观-宏观-中观-微观”间隔控制方式。
技术实现思路
本专利技术要解决的技术问题是提供一种鲁棒性和可用性较好的基于鲁棒策略的双层地铁交通流优化控制方法,该方法可增强调配方案制定的学科性且可有效防止地铁列车运行冲突。实现本专利技术目的的技术方案是提供一种基于鲁棒策略的双层地铁交通流优化控制方法,包括如下步骤:步骤A、根据各个列车的计划运行参数,生成轨道交通网络的拓扑结构图;步骤B、基于步骤A所构建的轨道交通网络的拓扑结构图,分析列车流的可控性和敏感性二类特性;步骤C、根据各个列车的计划运行参数,在构建列车动力学模型的基础上,依据列车运行冲突耦合点建立列车运行冲突预调配模型,生成多列车无冲突运行轨迹;步骤D、在每一采样时刻t,基于列车当前的运行状态和历史位置观测序列,对列车未来某时刻的行进位置进行预测;其具体过程如下:步骤D1、列车轨迹数据预处理,以列车在起始站的停靠位置为坐标原点,在每一采样时刻,依据所获取的列车原始离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn],采用一阶差分方法对其进行处理获取新的列车离散位置序列△x=[△x1,△x2,...,△xn-1]和△y=[△y1,△y2,...,△yn-1],其中△xi=xi+1-xi,△yi=yi+1-yi(i=1,2,...,n-1);步骤D2、对列车轨迹数据聚类,对处理后新的列车离散二维位置序列△x和△y,通过设定聚类个数M',采用K-means聚类算法分别对其进行聚类;步骤D3、对聚类后的列车轨迹数据利用隐马尔科夫模型进行参数训练,通过将处理后的列车运行轨迹数据△x和△y视为隐马尔科夫过程的显观测值,通过设定隐状态数目N'和参数更新时段τ',依据最近的T'个位置观测值并采用B-W算法滚动获取最新隐马尔科夫模型参数λ';具体来讲:由于所获得的列车轨迹序列数据长度是动态变化的,为了实时跟踪列车轨迹的状态变化,有必要在初始轨迹隐马尔科夫模型参数λ'=(π,A,B)的基础上对其重新调整,以便更精确地推测列车在未来某时刻的位置;每隔时段τ',依据最新获得的T'个观测值(o1,o2,...,oT')对轨迹隐马尔科夫模型参数λ'=(π,A,B)进行重新估计;步骤D4、依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q;步骤D5、每隔时段根据最新获得的隐马尔科夫模型参数λ'=(π,A,B)和最近H个历史观测值(o1,o2,...,oH),基于列车当前时刻的隐状态q,在时刻t,通过设定预测时域h',获取未来时段列车的位置预测值O;步骤E、建立从列车的连续动态到离散冲突逻辑的观测器,将地铁交通系统的连续动态映射为离散观测值表达的冲突状态;当系统有可能违反交通管制规则时,对地铁交通混杂系统的混杂动态行为实施监控,为控制中心提供及时的告警信息;步骤F、当告警信息出现时,在满足列车物理性能、区域容流约束和轨道交通调度规则的前提下,通过设定优化指标函数,采用自适应控制理论方法对列车运行轨迹进行鲁棒双层规划,并将规划结果传输给各列车,各列车接收并执行列车避撞指令直至各列车均到达其解脱终点。进一步的,步骤A的具体过程如下:步骤A1、从地铁交通控制中心的数据库提取各个列车运行过程中所停靠的站点信息;步骤A2、按照正反两个运行方向对各个列车所停靠的站点信息进行分类,并将同一运行方向上的相同站点进行合并;步骤A3、根据站点合并结果,按照站点的空间布局形式用直线连接前后多个站点。进一步的,步骤B的具体过程如下:步骤Bl、构建单一子段上的交通流控制模型;其具体过程如下:步骤Bl.1、引入状态变量Ψ、输入变量u和输出变量Ω,其中Ψ表示站点间相连路段上某时刻存在的列车数量,它包括单路段和多路段两种类型,u表示轨道交通调度员针对某路段所实施的调度措施,如调整列车速度或更改列车的在站时间等,Ω表示某时段路段上离开的列车数量;步骤B1.2、通过将时间离散化,建立形如Ψ(t+△t)=A1Ψ(t)+B1u(t)和Ω(t)=C1Ψ(t)+D1u(t)的单一子段上的离散时间交通流控制模型,其中△t表示采样间隔,Ψ(t)表示t时刻的状态向量,A1、B1、C1和D1分别表示t时刻的状态转移矩阵、输入矩阵、输出测量矩阵和直接传输矩阵;步骤B2、构建多子段上的交通流控制模型;其具体过程如下:步骤B2.1、根据线路空间布局形式和列车流量历史统计数据,获取交叉线路各子段上的流量比例参数β;步骤B2.2、根据流量比例参数和单一子段上的离散时间交通流控制模型,构建形如Ψ(t+△t)=A1Ψ(t)+B1u(t)和Ω(t)=C1Ψ(t)+D1u(t)的多子段上的离散时间交通流控制模型;步骤B3、根据控制模型的可控系数矩阵[B1,A1B1,...,A1n-1B1]的秩与数值n的关系,定性分析其可控性,根据控制模型的敏感系数矩阵[C1(zI-A1)-1B1+D1],定量分析其输入输出敏感性,其中n表示状态向量的维数,I表示单位矩阵,z表示对原始离散时间交通流控制模型进行转换的基本因子。进一步的,步骤C的具体过程如下:步骤C1、列车状态转移建模,列车沿轨道交通路网运行的过程表现为在站点间的动态切换过程,根据列车运行计划本文档来自技高网
...
基于鲁棒策略的双层地铁交通流优化控制方法

【技术保护点】
一种基于鲁棒策略的双层地铁交通流优化控制方法,其特征在于包括如下步骤:步骤A、根据各个列车的计划运行参数,生成轨道交通网络的拓扑结构图;步骤B、基于步骤A所构建的轨道交通网络的拓扑结构图,分析列车流的可控性和敏感性二类特性;步骤C、根据各个列车的计划运行参数,在构建列车动力学模型的基础上,依据列车运行冲突耦合点建立列车运行冲突预调配模型,生成多列车无冲突运行轨迹;步骤D、在每一采样时刻t,基于列车当前的运行状态和历史位置观测序列,对列车未来某时刻的行进位置进行预测;其具体过程如下:步骤D1、列车轨迹数据预处理,以列车在起始站的停靠位置为坐标原点,在每一采样时刻,依据所获取的列车原始离散二维位置序列x=[x

【技术特征摘要】
1.一种基于鲁棒策略的双层地铁交通流优化控制方法,其特征在于包括如下步骤:步骤A、根据各个列车的计划运行参数,生成轨道交通网络的拓扑结构图;步骤B、基于步骤A所构建的轨道交通网络的拓扑结构图,分析列车流的可控性和敏感性二类特性;步骤C、根据各个列车的计划运行参数,在构建列车动力学模型的基础上,依据列车运行冲突耦合点建立列车运行冲突预调配模型,生成多列车无冲突运行轨迹;步骤D、在每一采样时刻t,基于列车当前的运行状态和历史位置观测序列,对列车未来某时刻的行进位置进行预测;其具体过程如下:步骤D1、列车轨迹数据预处理,以列车在起始站的停靠位置为坐标原点,在每一采样时刻,依据所获取的列车原始离散二维位置序列x=[x1,x2,...,xn]和y=[y1,y2,...,yn],采用一阶差分方法对其进行处理获取新的列车离散位置序列△x=[△x1,△x2,...,△xn-1]和△y=[△y1,△y2,...,△yn-1],其中△xi=xi+1-xi,△yi=yi+1-yi(i=1,2,...,n-1);步骤D2、对列车轨迹数据聚类,对处理后新的列车离散二维位置序列△x和△y,通过设定聚类个数M',采用K-means聚类算法分别对其进行聚类;步骤D3、对聚类后的列车轨迹数据利用隐马尔科夫模型进行参数训练,通过将处理后的列车运行轨迹数据△x和△y视为隐马尔科夫过程的显观测值,通过设定隐状态数目N'和参数更新时段τ',依据最近的T'个位置观测值并采用B-W算法滚动获取最新隐马尔科夫模型参数λ';具体来讲:由于所获得的列车轨迹序列数据长度是动态变化的,为了实时跟踪列车轨迹的状态变化,有必要在初始轨迹隐马尔科夫模型参数λ'=(π,A,B)的基础上对其重新调整,以便更精确地推测列车在未来某时刻的位置;每隔时段τ',依据最新获得的T'个观测值(o1,o2,...,oT')对轨迹隐马尔科夫模型参数λ'=(π,A,B)进行重新估计;步骤D4、依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q;步骤D5、每隔时段根据最新获得的隐马尔科夫模型参数λ'=(π,A,B)和最近H个历史观测值(o1,o2,...,oH),基于列车当前时刻的隐状态q,在时刻t,通过设定预测时域h',获取未来时段列车的位置预测值O;步骤E、建立从列车的连续动态到离散冲突逻辑的观测器,将地铁交通系统的连续动态映射为离散观测值表达的冲突状态;当系统有可能违反交通管制规则时,对地铁交通混杂系统的混杂动态行为实施监控,为控制中心提供及时的告警信息;步骤F、当告警信息出现时,在满足列车物理性能、区域容流约束和轨道交通调度规则的前提下,通过设定优化指标函数,采用自适应控制理论方法对列车运行轨迹进行鲁棒双层规划,并将规划结果传输给各列车,各列车接收并执行列车避撞指令直至各列车均到达其解脱终点;步骤F的具体过程如下:步骤F1、基于步骤B和步骤E的分析结果,确定具体所采取的交通流调控措施,包括调整列车的运行速度和/或调整列车在站时间两类措施,以及采用以上调控措施的具体地点和时机;步骤F2、设定列车避撞规划的终止参考点位置P、避撞策略控制时域Θ、轨迹预测时域Υ;终止参考点位置P为列车的下一个停站站点,参数Θ的值为300秒,γ的值为300秒;步骤F3、运行冲突...

【专利技术属性】
技术研发人员:韩云祥黄晓琼
申请(专利权)人:江苏理工学院
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1