一种提高压缩机滑片耐磨损性的薄膜及其制备方法技术

技术编号:6819112 阅读:249 留言:0更新日期:2012-04-11 18:40
本发明专利技术公开了一种提高压缩机滑片耐磨损性的薄膜以及制备方法,该薄膜位于滑片基体表面,为多层膜结构,自滑片基体表面起,第一层是线性离子源辅助沉积的金属单质薄膜粘结层,第二层是金属单质薄膜过渡层,第三层是金属硬质碳化物薄膜过渡层,第四层是类金刚石碳膜层。与现有技术相比,本发明专利技术通过优化设计滑片基体表面的薄膜结构以及优化制备工艺,得到的薄膜具有硬度高、摩擦系数低、耐磨耐蚀性高、表面光滑、厚度均匀,以及膜基结合力高的优点,能够提高压缩机滑片的耐磨损性,从而使滑片基体能够在R410A或更高级别新冷媒以及润滑剂的环境下使用,并且提高滑片基体的使用寿命。

【技术实现步骤摘要】

本专利技术涉及压缩机滑片
,尤其涉及
技术介绍
近年来,极端的气候变化已引起人们越来越多的关注,环保问题已经成为全球最热门的话题,臭氧层的不断破坏和气候的逐渐变暖,是当今地球人类所面临的两大亟待解决的环境问题。被广泛应用于汽车、空调、冰箱等电器致冷装置中的氟里昂是臭氧层破坏和制造温室效应的主要参与者,它在地球表面很稳定,但是在距离地球表面15千米 50千米的高空,受到紫外线的照射,就会生成新的物质和氯离子,使臭氧层变得越来越薄,局部区域例如南极上空甚至出现臭氧层空洞,给人类健康和生态环境带来多方面的危害,按照《蒙特利尔议定书》的规定,我国在2010年1月1日已全面禁用此类物质。目前,国内外空调企业已经在高能效空调上启用一种新的制冷剂-R410A环保新冷媒来替代传统氟利昂类物质R22。R410A环保新冷媒主要由氢、氟和碳元素组成,具有稳定、无毒等特点,同时由于不含氯元素,故不会破坏臭氧层;另外,采用R410A环保新冷媒的空调在性能方面也有一定提高,因此,R410A环保新冷媒是目前国际公认的用来替代R22最合适的冷媒,至今已在欧美、日本等国家和地区得到应用。但是,由于环保新冷媒的运用,原有的压缩机及其零配件已经不能完全满足新的冷媒介质环境要求,其中包括压缩机内部工作压力,从R22时的1.5Mpa 2Mpa增加到 R410A时的3Mpa 4Mpa,日本的最新技术压缩机的内部工作压力甚至已经达到IlMpa以上。因此,在新的冷媒环境下,压缩机的“心脏部件”滑片的摩损加剧,原有滑片的表面处理技术已经不能满足需求,亟需开发一种能适应高压摩擦及润滑剂环境下的绿色高性能表面涂层新材料和技术。
技术实现思路
本专利技术要解决的技术问题是针对现有技术现状,提供,该薄膜能够提高压缩机滑片的耐磨损性,从而使压缩机滑片适应因使用新冷媒而产生的超高压强以及使用润滑剂的环境。本专利技术解决上述技术问题所采用的技术方案为一种提高压缩机滑片耐磨损性的薄膜,该薄膜位于压缩机滑片基体表面,该薄膜是多层膜结构,自压缩机滑片基体表面起, 第一层是线性离子源辅助沉积的金属单质薄膜粘结层,第二层是金属单质薄膜过渡层,第三层是金属硬质碳化物薄膜过渡层,第四层是类金刚石碳膜层。所述的线性离子源辅助沉积的金属单质薄膜粘结层是采用磁控溅射在基体表面沉积金属单质薄膜的同时开启线性离子源并通入氩气,在沉积金属单质薄膜的同时保持刻蚀状态进而形成的高结合力粘结层;所述的金属硬质碳化物薄膜过渡层是采用磁控溅射在基体表面沉积金属单质薄4膜的同时开启线性离子源并通入碳氢气体,在金属单质薄膜与金刚石碳膜层之间形成的金属碳化物过渡层。所述的金属优选为钨、铜、钛、银或铬。所述的压缩机滑片基体优选为7Crl7、9Crl8、llCrl7、HlU H13中的任意一种钢材。本专利技术一种提高压缩机滑片耐磨损性的薄膜的制备方法具体为镀膜设备采用磁控溅射与离子束溅射复合镀膜机,包括真空室、磁控溅射源、线性离子源和能同时公转自转的工件托架,工件托架安装在真空室内,磁控溅射源上安装过渡层金属靶,制备过程包括以下步骤步骤1、清洗滑片基体将表面预处理完毕的滑片基体固定在工件托架上,调整真空室气压至 1 X 10_5Torr 5 X IO^5Torr,通入氩气,开启线性离子源,离子源的工作电流为0. IA 1A, 功率为100W 1000W,调整滑片基体的负偏压为0 300V,工作时间为10分钟 40分钟;步骤2、在滑片基体上依次沉积各层膜(1)沉积线性离子源辅助沉积的金属单质薄膜粘结层调整滑片基体的负偏压为50V 500V,保持线性离子源开启状态,工作电流为 0. IA 1A,继续通入氩气,同时开启磁控溅射源、调整磁控溅射源的工作电流为IA 5A,工作时间为5分钟 30分钟,然后关闭线性离子源;(2)沉积金属单质薄膜过渡层调整滑片基体的负偏压为50V 500V,保持磁控溅射源开启状态,调整磁控溅射源的工作电流为IA 5A,通入氩气,工作时间为5分钟 30分钟;(3)沉积金属硬质碳化物薄膜过渡层保持O)中工作条件不变,开启线性离子源,调整线性离子源的工作电流为 0. IA 0. 3A,同时对离子源通入碳氢气体,工作时间为5分钟 30分钟,然后关闭磁控溅射源;(4)沉积类金刚石碳膜层调整线性离子源的工作电流为0. IA 0. 5A,调整滑片基体的负偏压为50V 500V,工作时间为60分钟 500分钟,然后关闭线性离子源;步骤3、取出滑片基体待真空室温度降至室温,取出滑片,滑片表面得到多层结构的薄膜。所述的滑片基体的表面预处理方法可以为气体渗氮、气体碳氮共渗、气体氧-碳-氮三元共渗中的任意一种化学热处理方法。所述的碳氢气体优选为CH4或C2H2。与现有技术相比,本专利技术的优点在于(1)选用类金刚石(DLC)碳膜作为滑片基体表面的薄膜,充分利用其高硬度、低摩擦系数、高耐磨耐蚀性、表面光滑,以及可由多种绿色、干式的物理气相沉积(PVD)、化学气相沉积(CVD)技术,在小于200°C的低温下大面积生长,并且对基体适用性广等优异特性;(2)为了提高膜基结合力,增加滑片基体的服役性能,将上述优点(1)中单一的类金刚石碳膜优化设计为多层膜结构,引入金属元素及其碳合物,在不损失类金刚石碳膜硬度的前提下,进一步大幅度提高膜基结合力;(3)结合滑片基体的表面预处理工艺,在沉积薄膜之前,对滑片基体优化进行表面预处理,包括气体渗氮、气体碳氮共渗、气体氧-氮-碳三元共渗技术,以提高滑片基体的硬度,使滑片基材与多层膜结构的薄膜具有更高的匹配性,进而提高两者之间结合力;因此,本专利技术通过优化设计滑片基体表面的薄膜结构以及优化制备工艺,得到的薄膜具有硬度高、摩擦系数低、耐磨耐蚀性高、表面光滑、厚度均勻,以及膜基结合力高的优点,能够提高压缩机滑片的耐磨损性,从而使滑片基体能够在R410A或更高级别新冷媒以及润滑剂的环境下使用,并且提高滑片基体的使用寿命。附图说明图1是本专利技术中滑片基体表面的薄膜结构图。 具体实施例方式以下结合附图实施例对本专利技术作进一步详细描述。图1是本专利技术中滑片基体表面的薄膜结构示意图。实施例1 H13热作模具钢为压缩机滑片基体,滑片基体表面是由多层膜结构组成的薄膜,自滑片基体表面起,第一层是线性离子源辅助沉积的单质铬薄膜粘结层,第二层是单质铬薄膜过渡层,第三层是铬的硬质碳化物过渡层,第四层是类金刚石碳膜层。上述滑片基体表面的薄膜的制备方法如下镀膜设备采用磁控溅射与离子束溅射复合镀膜机,设备包括真空室、磁控溅射源、 线性离子源和能同时公转自转的工件托架,工件托架安装在真空室内部,磁控溅射源上安装由高纯度单质铬(纯度> 99.9% )金属靶,通过以下步骤进行制备(1)表面预处理H13热作模具钢作为压缩机滑片基体,将滑片基体经过气体碳氮共渗表面预处理;(2)清洗基体将上述表面预处理完毕的滑片基体固定在工件托架上,可按涂覆圆弧面和端面等方向适时调整,将真空室气压调整至2 X IO-S1Torr,通入40sCCm氩气,开启线性离子源,线性离子源的工作电流为0. 2A,功率为270W,调整滑片基体的负偏压为100V, 工作时间为33分钟;(3)沉积线性离子源辅助沉积的单质铬薄膜粘结层调整滑片基体负偏压为 100V,保持本文档来自技高网
...

【技术保护点】
1.一种提高压缩机滑片耐磨损性的薄膜,位于压缩机滑片基体表面,其特征是:所述的薄膜是多层膜结构,自压缩机滑片基体表面起,第一层是线性离子源辅助沉积的金属单质薄膜粘结层,第二层是金属单质薄膜过渡层,第三层是金属硬质碳化物薄膜过渡层,第四层是类金刚石碳膜层;所述的线性离子源辅助沉积的金属单质薄膜粘结层是采用磁控溅射在基体表面沉积金属单质薄膜的同时开启线性离子源并通入氩气,在沉积金属单质薄膜的同时保持刻蚀状态进而形成的高结合力粘结层;所述的金属硬质碳化物薄膜过渡层是采用磁控溅射在基体表面沉积金属单质薄膜的同时开启线性离子源并通入碳氢气体,在金属单质薄膜与金刚石碳膜层之间形成的金属碳化物过渡层。

【技术特征摘要】

【专利技术属性】
技术研发人员:庄希平夏祖伟汪爱英郑贺
申请(专利权)人:宁波甬微集团有限公司
类型:发明
国别省市:97

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1