具有静态无功补偿功能的直流大电流融冰装置制造方法及图纸

技术编号:5703169 阅读:225 留言:0更新日期:2012-04-11 18:40
具有静态无功补偿功能的直流大电流融冰装置,属于高低压供配电系统配套设备技术领域,其特征在于三绕组整流变压器原边并接于三相母线上,两副边分别与正端三相高压大电流可控硅阀、负端三相高压大电流可控硅阀中间点连接,两三相高压大电流可控硅阀的正、负极连接构成一个12脉冲整流装置,正端三相高压大电流可控硅阀正极串接直流电抗器后得正接线端,负端三相高压大电流可控硅阀的负极形成负接线端,正、负接线端之间连接设置短接线。本实用新型专利技术将直流大电流融冰技术与静态无功补偿技术有机融为一体,既可以作为静态无功补偿装置使用,又可作为电流可控的直流大电流融冰装置使用,明显降低高低压供配电系统装置的配套成本,有效提高设备利用率。(*该技术在2018年保护过期,可自由使用*)

【技术实现步骤摘要】

本技术属于高低压供配电系统配套设备
,具体涉及一种具有 静态无功补偿功能的直流大电流融冰装置。
技术介绍
因输电线路结冰和积雪而造成高压输电线断线和倒塔、倒杆的事故时有发 生,高压输电线路断线和倒塔事故严重影响了电网的安全运行,造成大面积停 电事故。为了防止这类事故的发生,必须及时将导线上的结冰和积雪化掉,目 前主要采取的有机械(振动)式、电热式两大类融冰方法。机械(振动)式融 冰,即采用振动导线的方法使冰雪脱落,其特点在于简单操作,无需浪费电能, 但其缺点是必须逐档进行,速度慢,而且在地面结冰和积雪严重的情况下,往 往因为交通问题而不能到达高山上的输电线路而无法进行操作。电热式融冰技 术,即利用将线路末端短路而产生的大电流将导线加热而达到融冰的目的,和 机械(振动)式融冰方法相比,电热式融冰技术的优点是融冰速度较快,不受 路面结冰和积雪的影响,但需耗费一定的电能和需要配置相关的配套装置。现 在普遍采用电热式融冰技术有交流大电流融冰技术和直流大电流融冰技术,相 比较而言,交流大电流融冰技术的优点在于每个变电所均有不同电压等级的交 流电源,因此电源比较容易获取,其缺点是在相同的融冰电流下,需要较高的 电源电压,因为--般输电线路的交流感抗比其电阻要大得多,从而融冰需要很 大的电源容量和很大的无功功率,融冰时对系统冲击较大,可能引起系统电压 稳定性问题;另一缺点是因为其交流电源的电压不可调,所以融冰电流不可以控制。直流大电流融冰技术的优点是在相同的融冰电流下,只需要较低的电源 电压,因为输电线路的直流感抗为零,所以融冰时对系统冲击很小;其缺点是需要另外配备整流和滤波装置,因为线路严重结冰的现象并不常见,使得这些整流和滤波装置的利用率较低。而静态无功补偿装置(SVC)能够降低电网中的谐 波含量、降低线损、提高系统电压质量和电压稳定性,增加输电线路的传输能 力,在电力系统中已经得到一定程度的应用。如果能将直流大电流融冰技术结 合到静态无功补偿装置中,将有效地提高设备利用率,也能解决现有直流大电 流融冰技术中存在的需另外配备整流和滤波装置的问题,但目前尚未有相应的 装置开发应用,而且传统静态无功补偿装置采用可控硅控制电抗器与固定投入 的无源滤波器结构,也难以实现转换控制。
技术实现思路
本技术旨在提供一种具有静态无功补偿功能的直流大电流融冰装置技 术方案,以有效解决输电线路融冰问题并提高设备利用率,克服现有现有技术 中存在的问题。所述的具有静态无功补偿功能的直流大电流融冰装置,其特征在于三绕组 整流变压器原边并接于三相母线上,两副边分别与正端三相高压大电流可控硅 阀、负端三相高压大电流可控硅阀中间点连接,正端三相高压大电流可控硅阔 的负极与负端三相高压大电流可控硅阀的正极连接构成一个12脉冲整流装置, 正端三相高压大电流可控硅阀正极串接直流电抗器后得正接线端,负端三相高 压大电流可控硅阀的负极形成负接线端,正接线端、负接线端之间连接设置短 接线。所述的具有静态无功补偿功能的直流大电流融冰装置,其特征在于所述的 正端三相高压大电流可控硅阀、负端三相高压大电流可控硅阀的中间点和正极、负极之间串接的可控硅相同。所述的具有静态无功补偿功能的直流大电流融冰装置,其特征在于所述的 三绕组整流变压器两副边分别采用星形、三角形接线方式,输出的线电压相位 相差30('且幅值相同。所述的具有静态无功补偿功能的直流大电流融冰装置,其特征在于所述的 三相母线上并接设置三相交流滤波装置。本技术将直流大电流融冰技术与静态无功补偿技术有机融为一体,构 思新颖、结构合理,通过对电路连接的选择和控制器的配合使用,使其既可以 作为静态无功补偿装置使用,提高系统电压质量和电压稳定性,增加输电线路 的传输能力,在线路结冰的情况下可作为电流可控的直流大电流融冰装置使用, 直接对输电线路进行融冰,实现了同一装置的多功能化,根据用电现场的不同 需求实现对应的功能,明显降低了高低压供配电系统装置的配套成本,有效提 高设备利用率,且切换操作简单,可实现实现感性无功的连续调节。附图说明图l为本技术的电路结构示意图2为本技术作为直流大电流融冰装置运行时的电路结构示意图; 图3为本技术作为静态无功补偿装置运行时的电路结构示意图4为本技术作为静态无功补偿装置运行的仿真实施例中通过直流电 抗器的电流波形图5为本技术作为静态无功补偿装置运行的仿真实施例中三相系统相 电压波形图和静态无功补偿装置输入到三相母线的电流波形图6为本技术作为静态无功补偿装置运行的仿真实施例中三相系统相 电压波形图和三绕组整流变压器原边电流波形图。图中l一控制器、2 —三绕组整流变压器、3 —三相交流滤波装置、4一直流电抗器、5 —正端三相高压大电流可控硅阀、6 —负端三相高压大电流可控硅 阀、7 —正接线端、8 —短接线、9一负接线端、10 —三相母线。曲线A:通过直流电抗器4的电流波形;曲线B:三相系统相电压波形;曲线C:静态无功补偿装置输入到三相母线的电流波形; 曲线D:三绕组整流变压器原边电流波形。具体实施方式以下结合说明书附图对本技术作进-一歩说明如图1所示为具有静态无功补偿功能的直流大电流融冰装置,三绕组整流 变压器2原边并接于三相母线上,两副边分别采用星形、三角形接线方式,输出的线电压相位相差30"且幅值相同,且两副边分别与正端三相高压大电流可控 硅阀5、负端三相高压大电流可控硅阀6中间点连接。正端三相高压大电流可控 硅阀5、负端三相高压大电流可控硅阀6中每相的主体是一串可控硅阀,每相可 控硅阀对外有三个电气连接端子,分别为正极、负极、中间点,中间点即为交 流侧,中间点和正极、负极之间串接的可控硅相同,包括所串联的可控硅型号、 数量均相同,其额定电压和数量由三绕组整流变压器2的副边电压决定。正端 三相高压大电流可控硅阀5的负极与负端三相高压大电流可控硅阀6的正极连 接构成一个12脉冲整流装置,正端三相高压大电流可控硅阀5正极串接直流电 抗器4后得正接线端7,负端三相高压大电流可控硅阀6的负极形成负接线端9, 正接线端7、负接线端9之间连接设置短接线8,短接线8也可以采用闸刀等方 式,由控制器1控制其连接或断开。正端三相高压大电流可控硅阀5、负端三相 高压大电流可控硅阀6的门极分别与控制器1的触发信号端相连,由控制器1控制其运行,同时控制器6通过控制短接线8的连接状况进行选择而切换,分 别作为直流大电流融冰装置、静态无功补偿装置的控制器使用。三相母线上并接设置三相交流滤波装置3用于用于滤除12脉冲整流装置产生的谐波电流。上述实施例中当短接线8断开时,本装置作为直流大电流融冰装置使用,如图2所示。 在使用过程中,先将待融冰线路的末端三相线路中的任意两相短接,在大电流 融冰装置的安装点处,将正接线端7、负接线端9分别接到线路中,通过调整可 控硅阀的触发角,得到融冰所需要的电流,通电后由于线路中电流很大,线路 发热进行融冰。当短接线8短接时,本装置作为静态无功补偿装置使用,如图3所示。该 静态无功补偿装置系统由一个12脉冲可控整流装置与几组L-C型滤波器组成, 在控制器1的控制下,12脉冲整流装置可成为一个可调的感性无功源,而三相 本文档来自技高网
...

【技术保护点】
具有静态无功补偿功能的直流大电流融冰装置,其特征在于三绕组整流变压器(2)原边并接于三相母线上,两副边分别与正端三相高压大电流可控硅阀(5)、负端三相高压大电流可控硅阀(6)中间点连接,正端三相高压大电流可控硅阀(5)的负极与负端三相高压大电流可控硅阀(6)的正极连接构成一个12脉冲整流装置,正端三相高压大电流可控硅阀(5)正极串接直流电抗器(4)后得正接线端(7),负端三相高压大电流可控硅阀(6)的负极形成负接线端(9),正接线端(7)、负接线端(9)之间连接设置短接线(8)。

【技术特征摘要】

【专利技术属性】
技术研发人员:梁一桥
申请(专利权)人:浙江谐平科技股份有限公司
类型:实用新型
国别省市:86[中国|杭州]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1