【技术实现步骤摘要】
本专利技术涉及机器人路径规划,尤其涉及一种机器人动态障碍物避障方法。
技术介绍
1、目前机器人的避障策略主要包括全局路径规划和局部路径规划。所述全局路径规划需要掌握所有的环境信息建立场景地图,再根据场景地图的所有信息进行路径规划,常见的全局规划算法如a*算法、dijkstra算法等,全局路径规划的实时性差,难以处理复杂的路径信息,大多适用于无障碍或稀疏障碍等简单环境。局部路径规划指在全部或部分未知的场景下,利用范围内的采集的局部环境信息,然后确定出所在场景地图的位置及其局部的障碍物分布情况,从而实现局部路径规划。局部路径规划更侧重机器人面对未知场景的适应能力和算法的避障能力。目前局部路径规划算法主要基于dqn(deep q-network)以及drqn(deep recurrent q-network)算法。根据已有的实验成果,相较基于dqn的局部路径规划算法,基于drqn的局部路径规划算法具有更好的决策和路径选择能力,但其需要消耗更多的存储空间和计算资源,且收敛时间更长。另外基于dqn的局部路径规划算法和基于drqn的局部路径规划算法
...【技术保护点】
1.一种机器人动态障碍物避障方法,其特征在于,包括以下步骤:
2.根据权利要求1所述的机器人动态障碍物避障方法,其特征在于,所述获取激光雷达的点云数据,根据动态障碍物相对相机位置的偏航角Yaw获取动态障碍物的坐标信息,将每一帧的BOX框信息和对应的动态障碍物的坐标信息一一对应保存;包括以下步骤:
3.根据权利要求1所述的机器人动态障碍物避障方法,其特征在于,所述对相同编号的动态障碍物的坐标信息进行拟合,获得动态障碍物在下一帧位姿;包括以下步骤:
4.根据权利要求1所述的机器人动态障碍物避障方法,其特征在于,所述保存相同编号的动态障碍
...【技术特征摘要】
1.一种机器人动态障碍物避障方法,其特征在于,包括以下步骤:
2.根据权利要求1所述的机器人动态障碍物避障方法,其特征在于,所述获取激光雷达的点云数据,根据动态障碍物相对相机位置的偏航角yaw获取动态障碍物的坐标信息,将每一帧的box框信息和对应的动态障碍物的坐标信息一一对应保存;包括以下步骤:
3.根据权利要求1所述的机器人动态障碍物避障方法,其特征在于,所述对相同编号的动态障碍物的坐标信息进行拟合,获得动态障碍物在下一帧位姿;包括以下步骤:
4.根据权利要求1所述的机器人动态障碍物避障方法,其特征在于,所述保存相同编号的动态障碍物在不同帧下的坐标信息,还包括判断已保存相同编号的动态障碍物的坐标信息的帧数是否大于3,若是保存最近帧下的坐标信息,剔除最早帧下的坐标信息。
5.根据权利要求1所述的机器人动态障碍物避障方法,其特征在于,所述深度卷积神经网络为yolov7网络或基于yolov7的改进网络。
6.根据权利要求5所述的机器人动态障碍物避障方法...
【专利技术属性】
技术研发人员:林毅,陈文强,陈华聪,田健,戴俊源,
申请(专利权)人:福建汉特云智能科技有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。