System.ArgumentOutOfRangeException: 索引和长度必须引用该字符串内的位置。 参数名: length 在 System.String.Substring(Int32 startIndex, Int32 length) 在 zhuanliShow.Bind() 一种激光辅助改善冷喷涂涂层锐化效应的复合方法技术_技高网

一种激光辅助改善冷喷涂涂层锐化效应的复合方法技术

技术编号:40005228 阅读:10 留言:0更新日期:2024-01-09 04:51
本发明专利技术公开了一种激光辅助改善冷喷涂涂层锐化效应的复合方法,针对冷喷涂技术中Laval喷嘴特性的影响,喷嘴中颗粒速率分布不均,喷涂颗粒速度沿半径的增大线性降低,造成沉积涂层中间高两端低的锐化现象,制约冷喷涂技术在立体成型中的应用,本发明专利技术通过激光光斑能量分布的智能化调节,在激光光路上安装调节光阑,使激光光斑具有能量沿半径从里到外呈线性升高的反高斯分布特征,本发明专利技术利用激光能量增加低速率喷涂颗粒的沉积效率,改善冷喷涂沉积涂层的锐化现象,使沉积层厚度均匀,为实现冷喷涂立体成型奠定基础。

【技术实现步骤摘要】

本专利技术涉及材料表面改性和激光增材制造(3d打印)领域,具体涉及一种激光辅助改善冷喷涂涂层锐化效应的复合方法


技术介绍

1、激光增材制造技术(3d打印技术)被西方媒体誉为将来的“第三次工业革命”的代表性技术,也是大批量制造模式向个性化制造模式发展的引领技术。该技术具有“自由制造”的加工特点,使得小批量生产、复杂型腔、高性能要求的大型金属件的制造更加容易,减少了加工工序,缩短了加工周期,而且越复杂的零件3d打印技术的优势越突出。尽管激光增材制造技术有广阔的应用前景,也存在着巨大的挑战。目前工业化最大的难题主要有:1)材料物理与化学性能控制难,2)如何解决加工精度和成型效率之间的协调性,3)成型缺陷和热量的监控问题等,4)易氧化、易相变材料的成型质量控制问题。

2、冷喷涂技术的诞生为3d打印技术提供了新的成型思路,冷喷涂以预热压缩气体(氮气、氦气或混合气体)为加速介质,带动金属颗粒在固态下以极高的速度撞击基板,通过颗粒发生强烈塑性变形的方式沉积形成涂层的一种低温喷涂技术,是一种低温固态沉积技术,避免了热喷涂高温沉积过程中可能发生的成分、组织结构的变化。具有沉积效率高、无热影响、无氧化烧损和残余应力低等优点。因此,适用于温度敏感材料(如纳米材料、非晶材料等)、易氧化材料(如铝、铜、钛等)和易相变材料(如碳基复合材料等)的立体成型。

3、然而,为了使喷涂粒子速率达到能实现固态塑性变形沉积的超音速条件,根据空气动力学原理,管道截面积必须先收缩后扩张的特征,这就必然导致非轴线处的粒子速度要小于轴线处粒子的速度,离轴线越远粒子的速度就越小,边缘区域的粒子和轴线处粒子的速度大小差异性大,喷嘴内粒子速度分布规律如图1所示。该特性导致喷涂过程中中心轴线位置速度最高的粒子容易实现沉积,而边缘部位低速率粒子沉积效率低,最终导致单道喷涂涂层截面呈现中间高两边低的三角形特征,不利于薄壁零件的立体成型。为了弥补喷涂粒子速率不均匀而导致的成型厚度不均匀的问题,本专利技术提出采用光斑激光能量呈中间低边缘高线性升高的方法来增加低速率颗粒的沉积效率,改善单纯冷喷涂涂层的锐化特征。


技术实现思路

1、冷喷涂作为一种低温固态沉积技术,在沉积易氧化、易相变材料方面有极大的优势,有望成为一种无冶金特征的新型3d成型技术。但由于冷喷涂技术制备涂层发生锐化效应,难以成型薄壁立体零件,针对该问题本专利技术提出利用能量呈反高斯分布特征的激光光斑辅助改善喷涂沉积层的锐化效应,使沉积层厚度均匀,为实现冷喷涂立体成型奠定基础。

2、本专利技术的技术方案如下:

3、一种激光辅助改善冷喷涂涂层锐化效应的复合方法,包括如下步骤:

4、(1)对基材表面进行除油除锈之后,再进行激光冲击强化处理;

5、基材可以是各类金属材料,形状不限;

6、具体的,激光冲击强化处理的方法如下:利用yag脉冲激光器进行实验,实验参数设置为:激光波长1064nm,重复频率1hz,脉宽10ns,光斑直径2.6mm,光斑搭接率50%,激光功率密度7.84gw/cm2;并选用120μm厚的3m铝带作为吸收层,1~2mm厚的均匀流水层作为约束层;其中,方块样采用单面喷丸,振动疲劳试样采用双面喷丸;利用高功率密度的脉冲激光束,通过约束层辐照到材料表面的黑色吸收层,材料表层组织吸收激光能量而产生等离子体;在激光冲击过程中,等离子体压力持续增大,在极短的时间内等离子体发生爆炸形成冲击波,等离子体冲击波通过涂层后冲击在试样表面从而形成强化层;

7、(2)选择金属粉末作为喷涂材料;

8、金属粉末包括tc4、wc/stellite 6、ti6al4v等高性能合金材料,粉末粒度为10~50μm,粉末形状为球形或类球形;

9、(3)利用预热的压缩气体携带喷涂材料在基材上立体成型,冷喷涂沉积过程中,启动激光同步加热喷涂区域,利用能量分布呈反高斯分布的激光光斑同步处理沉积层,实现冷喷涂涂层锐化效应的改善;

10、作为优选,冷喷涂的喷涂压力为2~5mpa,载气预热温度为0~1000℃,载气为压缩氮气;

11、作为优选,激光光源可以是二氧化碳激光、半导体激光或光纤激光;激光光斑为圆形,光斑直径为4~8mm,光斑与喷涂粉斑大小一致并重合;激光能量应呈反高斯分布,即激光能量从圆心到圆周沿半径方向线性升高,光斑圆心位置最低激光功率调节范围为0~1000w,光斑圆周最高激光功率调节范围为500~3000w;

12、作为优选,在激光光路上放置一个圆形光阑,通过调整光阑的大小和形状,可以改变激光的能量分布;安装光阑的具体实施步骤如下:

13、1)选择适当大小的圆形光阑,光阑的直径应该略小于激光的光斑直径,以确保能够限制光斑的大小和分布;

14、2)将圆形光阑放置在激光束路径上,具体而言,可以将光阑放置在激光光路中的对准平台上;

15、3)调节光阑的位置,将圆形光阑放置在激光光路的峰值位置,以最大限度地限制光斑的大小和分布,从而实现将光斑中心的能量分布最低,边缘的能量分布增高的效果。

16、本专利技术的优点在于:

17、1、利用引入激光能量改善了冷喷涂沉积层的锐化效应,使冷喷涂沉积涂层厚度均匀,实现冷喷涂技术立体成型的应用;

18、2、相比传统的以激光冶金熔化为特征的激光立体成型技术,冷喷涂技术的低温固态沉积特性有利于制备易氧化、易相变材料的立体成型。

本文档来自技高网...

【技术保护点】

1.一种激光辅助改善冷喷涂涂层锐化效应的复合方法,其特征在于,包括如下步骤:

2.如权利要求1所述的激光辅助改善冷喷涂涂层锐化效应的复合方法,其特征在于,步骤(1)中,激光冲击强化处理的方法如下:利用YAG脉冲激光器进行实验,实验参数设置为:激光波长1064nm,重复频率1Hz,脉宽10ns,光斑直径2.6mm,光斑搭接率50%,激光功率密度7.84GW/cm2;并选用120μm厚的3M铝带作为吸收层,1~2mm厚的均匀流水层作为约束层;方块样采用单面喷丸,振动疲劳试样采用双面喷丸;利用高功率密度的脉冲激光束,通过约束层辐照到材料表面的黑色吸收层,材料表层组织吸收激光能量而产生等离子体;在激光冲击过程中,等离子体压力持续增大,在极短的时间内等离子体发生爆炸形成冲击波,等离子体冲击波通过涂层后冲击在试样表面从而形成强化层。

3.如权利要求1所述的激光辅助改善冷喷涂涂层锐化效应的复合方法,其特征在于,步骤(2)中,金属粉末选自TC4、WC/Stellite 6或Ti6Al4V,粉末粒度为10~50μm,粉末形状为球形或类球形。

4.如权利要求1所述的激光辅助改善冷喷涂涂层锐化效应的复合方法,其特征在于,步骤(3)中,冷喷涂的喷涂压力为2~5MPa,载气预热温度为0~1000℃,载气为压缩氮气。

5.如权利要求1所述的激光辅助改善冷喷涂涂层锐化效应的复合方法,其特征在于,步骤(3)中,激光光源为二氧化碳激光、半导体激光或光纤激光;激光光斑为圆形,光斑直径为4~8mm,光斑与喷涂粉斑大小一致并重合;激光能量应呈反高斯分布,即激光能量从圆心到圆周沿半径方向线性升高,光斑圆心位置最低激光功率调节范围为0~1000W,光斑圆周最高激光功率调节范围为500~3000W。

6.如权利要求1所述的激光辅助改善冷喷涂涂层锐化效应的复合方法,其特征在于,步骤(3)中,在激光光路上放置一个圆形光阑,通过调整光阑的大小和形状以改变激光的能量分布。

...

【技术特征摘要】

1.一种激光辅助改善冷喷涂涂层锐化效应的复合方法,其特征在于,包括如下步骤:

2.如权利要求1所述的激光辅助改善冷喷涂涂层锐化效应的复合方法,其特征在于,步骤(1)中,激光冲击强化处理的方法如下:利用yag脉冲激光器进行实验,实验参数设置为:激光波长1064nm,重复频率1hz,脉宽10ns,光斑直径2.6mm,光斑搭接率50%,激光功率密度7.84gw/cm2;并选用120μm厚的3m铝带作为吸收层,1~2mm厚的均匀流水层作为约束层;方块样采用单面喷丸,振动疲劳试样采用双面喷丸;利用高功率密度的脉冲激光束,通过约束层辐照到材料表面的黑色吸收层,材料表层组织吸收激光能量而产生等离子体;在激光冲击过程中,等离子体压力持续增大,在极短的时间内等离子体发生爆炸形成冲击波,等离子体冲击波通过涂层后冲击在试样表面从而形成强化层。

3.如权利要求1所述的激光辅助改善冷喷涂涂层锐化效应的复合方法,其特征在于,步骤(2)中,金属粉末...

【专利技术属性】
技术研发人员:李波胡耀峰姚建华姚喆赫吴国龙宋其伟
申请(专利权)人:浙江工业大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1