基于SA-BP神经网络的高稳定性二维角度检查装置与方法制造方法及图纸

技术编号:38281334 阅读:8 留言:0更新日期:2023-07-27 10:29
本发明专利技术提出基于SA

【技术实现步骤摘要】
基于SA

BP神经网络的高稳定性二维角度检查装置与方法


[0001]本专利技术属于精密测量
,特别是涉及基于SA

BP神经网络的高稳定性二维角度检查装置与方法。

技术介绍

[0002]精密小角度计量仪器在精密测量
、光学工程领域、尖端科学实验领域和高端精密装备制造领域中均发挥着重要作用。但由于使用过程中的误差累积,仪器测量精度会不断下降。因此需要定期对仪器进行检定和校准,以满足上述领域对小角度计量的需求。
[0003]专业计量机构有能力检定、校准精密小角度计量仪器,但仪器送检存在时间成本,降低了仪器的使用效率,不能满足特定场景下高频次检定与校准的需求。
[0004]小角度检查仪具有量程大、分辨力高、操作简便的优点,综合性能突出。面向多种精密小角度计量仪器均能即时完成检定与校准工作,因此得到了广泛应用。
[0005]传统小角度检查仪如图1所示,该装置包括带筋工作台1、工作台转轴2、工作台支撑件3、驱动装置4、第一定位指示计5、第二定位指示计6及底座7;带筋工作台1通过工作台转轴2与工作台支撑件3接触,在驱动装置4的推动下发生俯仰方向的一维角度,工作台支撑件3与驱动装置4均位于底座7上;通过第一定位指示计5、第二定位指示计6的示值差及中轴线间距,能够解算出带筋工作台1偏转的角度值。在这种结构下,驱动装置4与定位指示计5、6仅能发生与测量一维角度,小角度检查仪无法检查二维角度;驱动装置4通常为单个电机,提升位移分辨力会降低行程,为了满足行程需求,电机分辨力限制在微米级别;定位指示计5、6存在较大的测量误差,导致小角度检查仪角度发生装置与角度测量装置的分辨力均难以突破微纳弧度量级的瓶颈。同时,传统小角度检查仪不包含任何降低环境干扰的手段,系统装置极易受到温度、湿度、压强等环境因素影响,从而限制了稳定性的提升。
[0006]综上所述,该系统存在以下三个问题:
[0007]第一、传统小角度检查仪仅通过一套驱动装置推动带筋工作台,定位指示计也仅在一个方向分布,不具备二维角度的发生及测量能力,因此只能检查一维角度;
[0008]第二、传统小角度检查仪角度发生装置的行程与分辨力间存在矛盾关系,采用的角度测量方法分辨力受限,难以实现微纳弧度量级的角度发生与测量分辨力;
[0009]第三、传统小角度检查仪容易受环境因素干扰,角度的发生与测量难以实现高稳定性;
[0010]因此,传统小角度检查仪在无法检查二维角度、难以发生微纳弧度量级标准角度的同时,还存在不具备高稳定性的问题。

技术实现思路

[0011]本专利技术目的是针对传统小角度检查仪只能检查一维角度、角度发生与测量装置不具备高分辨力及不具备高稳定性的问题,提出了基于SA

BP神经网络的高稳定性二维角度
检查装置与方法。
[0012]该方法使用两套驱动装置组成小角度检查仪的角度发生装置,将带筋工作台的运动自由度扩展至滚转与俯仰两个方向,两个旋转轴垂轴方向均有角度测量装置实时检测,对角度发生装置做闭环反馈控制,保证带筋工作台角度发生的准确性。经实验验证,该方法能够发生二维标准角度,解决小角度检查仪不能检查二维角度的问题;
[0013]该方法使用基于宏微联合驱动的微纳弧度量级角度发生方法,将行程大、位移分辨力低的丝杠电机与行程小、位移分辨力高的压电陶瓷组合使用,分别实现大行程范围内的粗定位及小范围的精确补偿,解决了角度发生装置行程与分辨力无法兼顾的问题;同时,使用自准直仪作为角度测量装置,有效提升了角度测量装置的分辨力。经实验验证,小角度检查仪能够发生与测量微纳弧度量级的微小角度,解决了角度发生与测量装置不具备高分辨力的问题;
[0014]同时,该方法使用环境补偿和搭建计量框架的方法,采用五个传感器分别反馈温度、湿度、压强等环境因素,并根据测得的环境漂移量对小角度检查仪进行反馈补偿;同时,将角度发生装置与角度测量装置置于热形变较小的殷钢计量框架上,降低了环境温度的影响,从而降低了环境漂移量,解决了角度检查装置不具备高稳定性的问题;
[0015]因此,该专利技术同传统小角度检查仪相比,具有能够检查二维角度、发生微纳弧度量级标准角度、提升角度发生与测量装置稳定性的技术优势。
[0016]本专利技术是通过以下技术方案实现的,本专利技术提出基于SA

BP神经网络的高稳定性二维角度检查装置,包括带筋工作台、工作台转轴、工作台支撑件、驱动装置(第一压电陶瓷、第一丝杠电机、第二压电陶瓷、第二丝杠电机)、底座、第一平面反射镜、第二平面反射镜、第一自准直仪、第二自准直仪、驱动模块电路板、环境补偿模块电路板、主控模块电路板、显示、输入模块电路板、第一温度传感器、第二温度传感器、第三温度传感器、湿度传感器、气压传感器、计量框架;显示、输入模块电路板接收到角度检定需求后,通过主控模块电路板将角度发生需求发送至驱动模块电路板,控制角度发生装置,使带筋工作台在滚转或俯仰方向发生偏转;角度测量装置实时检测带筋工作台在二维方向上的偏转角度,将测量结果发送回主控模块电路板;主控模块电路板根据环境补偿模块电路板采集到的环境参数利用SA

BP神经网络对测量结果进行校正;主控模块电路板最终根据校正后的角度测量结果控制角度发生装置,实现闭环反馈补偿,从而使系统装置能够发生两个维度的标准角度;
[0017]所述角度发生装置由带筋工作台、工作台转轴、工作台支撑件、驱动装置(第一压电陶瓷、第一丝杠电机、第二压电陶瓷、第二丝杠电机)组成,工作台转轴与工作台支撑件同轴,第一压电陶瓷与第一丝杠电机同轴,第二压电陶瓷与第二丝杠电机同轴;工作台支撑件与第一丝杠电机在底座上的位置均位于同一条平行于滚转角旋转轴的直线上,工作台支撑件与第二丝杠电机在底座上的位置均位于同一条平行于俯仰角旋转轴的直线上;带筋工作台通过工作台转轴与工作台支撑件连接,在驱动装置推动下可在滚转与俯仰两个方向发生微小角度;
[0018]所述角度测量装置由第一平面反射镜、第二平面反射镜、第一自准直仪、第二自准直仪组成;带筋工作台在二维方向偏转后,第一自准直仪通过第一平面反射镜测量滚转角,第二自准直仪通过第二平面反射镜测量俯仰角,从而使系统装置的角度测量分辨力提升至微纳弧度量级;
[0019]所述第一压电陶瓷与第一丝杠电机、第二压电陶瓷与第二丝杠电机分别组成两套宏微联合驱动装置;位移分辨力较低、行程大的第一丝杠电机、第二丝杠电机实现大行程范围内的粗定位后,由位移分辨力较高、行程小的第一压电陶瓷、第二压电陶瓷在角度测量装置的闭环反馈下做精确补偿,从而使系统装置能够在大行程范围内发生微纳弧度量级角度;
[0020]所述角度发生装置与角度测量装置均位于计量框架上,第一温度传感器、第二温度传感器、第三温度传感器、湿度传感器、气压传感器分别采集环境的温度、湿度、压强数据,将数据通过环境补偿模块电路板发送给主控模块电路板,通过SA

BP神经网络进而实现对角度发本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.基于SA

BP神经网络的高稳定性二维角度检查装置,其特征在于,包括带筋工作台(1)、工作台转轴(2)、工作台支撑件(3)、驱动装置(4)、底座(7)、第一平面反射镜(8)、第二平面反射镜(9)、第一自准直仪(10)、第二自准直仪(11)、驱动模块电路板(12)、环境补偿模块电路板(13)、主控模块电路板(14)、显示、输入模块电路板(15)、第一温度传感器(16)、第二温度传感器(17)、第三温度传感器(18)、湿度传感器(19)、气压传感器(20)及计量框架(21);所述驱动装置(4)包括第一压电陶瓷(41)、第一丝杠电机(42)、第二压电陶瓷(43)和第二丝杠电机(44);所述显示、输入模块电路板(15)接收到角度检定需求后,通过主控模块电路板(14)将角度发生需求发送至驱动模块电路板(12)控制角度发生装置,使带筋工作台(1)在滚转或俯仰方向发生偏转;角度测量装置实时检测带筋工作台(1)在二维方向上的偏转角度,将测量结果发送回主控模块电路板(14);主控模块电路板(14)根据环境补偿模块电路板(13)采集到的环境参数利用SA

BP神经网络对测量结果进行校正;主控模块电路板(14)最终根据校正后的角度测量结果控制角度发生装置,实现闭环反馈补偿;所述角度发生装置由带筋工作台(1)、工作台转轴(2)、工作台支撑件(3)和驱动装置(4)组成,工作台转轴(2)与工作台支撑件(3)同轴,第一压电陶瓷(41)与第一丝杠电机(42)同轴,第二压电陶瓷(43)与第二丝杠电机(44)同轴;工作台支撑件(3)与第一丝杠电机(42)在底座(7)上的位置均位于同一条平行于滚转角旋转轴的直线上,工作台支撑件(3)与第二丝杠电机(44)在底座(7)上的位置均位于同一条平行于俯仰角旋转轴的直线上;带筋工作台(1)通过工作台转轴(2)与工作台支撑件(3)连接,在驱动装置(4)推动下可在滚转与俯仰两个方向发生微小角度;所述角度测量装置由第一平面反射镜(8)、第二平面反射镜(9)、第一自准直仪(10)和第二自准直仪(11)组成;带筋工作台(1)在二维方向偏转后,第一自准直仪(10)通过第一平面反射镜(8)测量滚转角,第二自准直仪(11)通过第二平面反射镜(9)测量俯仰角;所述第一压电陶瓷(41)与第一丝杠电机(42)、第二压电陶瓷(43)与第二丝杠电机(44)分别组成两套宏微联合驱动装置;第一丝杠电机(42)、第二丝杠电机(44)实现大行程范围内的粗定位后,第一压电陶瓷(41)、第二压电陶瓷(43)在角度测量装置的闭环反馈下做精确补偿;所述角度发生装置与角度测量装置均位于计量框架(21)上,第一温度传感器(16)、第二温度传感器(17)、第三温度传感器(18)、湿度传感器(19)、气压传感器(20)分别采集环境的温度、湿度、压强数据,将数据通过环境补偿模块电路板(13)发送给主控模块电路板(14),通过SA

BP神经网络进而实现对角度发生装置与角度测量装置的实时环境补偿,从而降低环境对系统装置的影响,提升小角度检查仪的稳定性。2.根据权利要求1所述的基于SA

BP神经网络的高稳定性二维角度检查装置,其特征在于,第一丝杠电机(42)与第二丝杠电机(44)在底座(7)上的位置均位于同一条平行于俯仰角旋转轴的直线上,工作台支撑件(3)在底座(7)上的位置位于第一丝杠电机(42)与第二丝杠电机(44)位置连线的垂直平分线上。3.根据权利要求1所述的基于SA

BP神经网络的高稳定性二维角度检查装置,其特征在于,工作台支撑件(3)与第一丝杠电机(42)在底座(7)上的位置均位于同一条平行于滚转角旋转轴的直线上,第二丝杠电机(44)在底座(7)上的位置位于工作台支撑件(3)与第一丝杠电机(42)位置连线的垂直平分线上。
4.根据权利要求1所述的基于SA

BP神经网络的高稳定性二维角度检查装置,其特征在于,工作台支撑件(3)与第一丝杠电机(42)在底座(7)上的位置均位于同一条平行于滚转角旋转轴的直线上,第一丝杠电机(42)与第二丝杠电机(44)在底座(7)上的位置均位于同一条平行于俯仰角旋转轴的直线上;或第一丝杠电机(42)与第二丝杠电机(44)在底座(7)上的位置均位于同一条平行于滚转角旋转轴的直线上,工作台支撑件(3)与第二丝杠电机(44)在底座(7)上的位置均位于同一条平行于俯仰角旋转轴的直线上。5.在权利要求1所述基于SA

BP神经网络的高稳定性二维角度检查装置上实现的高稳定性微纳弧度量级二维角度检查方法,其特征在于,包括以下步骤:步骤a、利用标准仪器作为SA

BP神经网络的输出值,即校准后的测量结果X、Y,利用第一温度传感器(16)、第二温度传感器(17)、第三温度传感器(18)、湿度传感器(19)、气压传感器(20)的测量温度值a、b、c,湿度值d,气压值e与第一自准直仪(10)与第二自准直仪(11)的角度测量结果x、y作为SA

BP神经网络的输入值,利用这些数据训练得到二维角度检查装置的SA

BP神经网络;步骤b、第一温度传感器(16)、第二温度传感器(17)、第三温度传感器(18)、湿度传感器(19)、气压传感器(20)开始采集数据,通过环境补偿模块电路板(13)将数据发送给主控模块电路板(14),主控模块电路板(14)根据数据利用SA

BP神经网络计算校准后的测量结果,实现实时补偿;主控模块电路板(14)向显示、输入模块电路板(15)发送调零指令,使带筋工作台(1)在滚转角方向与俯仰角方向均处于零位,将待检定仪器放置在带筋工作台(1)上并调零示数;步骤c、向显示、输入模块电路板(15)发送滚转角发生指令,主控模块电路板(14)接收指令后,由驱动模块电路板(12)在第一自准直仪(10)测量值的反馈下控制第二压电陶瓷(43)、第二丝杠电机(44)发生总位移量h1,使带筋工作台(1)在滚转角方向发生待检定仪器受检所需的标准角度,记取系统装置的滚转角读数为s1,同时记取待检定仪器的滚转角显示值为α1,α1

s1即为待检定仪器在受检点的滚转角示值误差;其中,s1=f1(h1),f1表示1个函数;步骤d、重复步骤c,完成待检定仪器在滚转角方向全部受检点的示值误差检定;步骤e、向显示、输入模块电路板(15)发送调零指令,使带筋工作台(1)在滚转角方向与俯仰角方向上再次处于零位,调零待检定仪器的示数;步骤f、向显示、输入模块电路板(15)发送俯仰角发生指令,主控模块电路板(14)接收指令后,由驱动模块电路板(12)在第二自准直仪(11)测量值的反馈下控制第一压电陶瓷(41)、第一丝杠电机(42)发生总位移量h2,使带筋工作台(1)在俯仰角方向发生待检定仪器受检所需的标准角度,记取系统装置的俯仰角读数为s2,同时记取待检定仪器的俯仰角显示值为α2,α2

s2即为待检定仪器在受检点的俯仰角示值误差;其中,s2=f2(h2),f2表示1个函数;步骤g、重复步骤f,完成待检定仪器在俯仰角方向全部受检点的示值误差检定。6.在权利要求2所述基于SA

BP神经网络的高稳定性二维角度检查装置上实现的高稳定性微纳弧度量级二维角度检查方法,其特征在于,包括以下步骤:
步骤a、利用标准仪器作为SA

BP神经网络的输出值,即校准后的测量结果X、Y,利用第一温度传感器(16)、第二温度传感器(17)、第三温度传感器(18)、湿度传感器(19)、气压传感器(20)的测量温度值a、b、c,湿度值d,气压值e与第一自准直仪(10)与第二自准直仪(11)的角度测量结果x、y作为SA

BP神经网络的输入值,利用这些数据训练得到二维角度检查装置的SA

BP神经网络;步骤b、第一温度传感器(16)、第二温度传感器(17)、第三温度传感器(18)、湿度传感器(19)、气压传感器(20)开始采集数据,通过环境补偿模块电路板(13)将数据发送给主控模块电路板(14),主控模块电路板(14)根据数据利用SA

BP神经网络计算校准后的测量结果,实现实时补偿;主控模块电路板(14)向显示、输入模块电路板(15)发送调零指令,使带筋工作台(1)在滚转角方向与俯仰角方向均处于零位,将待检定仪器放...

【专利技术属性】
技术研发人员:李粤超石剑谭久彬
申请(专利权)人:哈尔滨工业大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1