【技术实现步骤摘要】
违约风险评估方法、设备与存储介质
[0001]本专利技术属于数据处理
,尤其涉及一种违约风险评估方法、设备与存储介质。
技术介绍
[0002]为了实现对授信风险的准确评估,在授权专利技术专利授权公告号CN112804242B《一种基于深度学习的非结构化数据的违约概率预测方法》中通过集成和清洗信贷主体人包括文本数据和时序数据在内的非结构化数据;将非结构化数据变换为深度学习模型可识别的数据格式;基于深度学习模型框架,提取数据特征作为样本数据;针对提取出来的样本数据,利用复杂机器学习分类算法
‑
集成树模型构建信用风险模型,输出违约概率预测,但是却存在以下技术问题:
[0003]1、未考虑对文本数据和时序数据进行重构,在进行违约风险评估时,文本数据反应的是用户的当前的实际情况,而时序数据则反应的是一段周期的用户的情况,与文本数据相比的话,其对于最后的违约概率的预测的可靠性和准确性明显更高,若不能对上述数据进行重构,则会导致最终的违约概率的预测的精度会受到一定程度的影响。
[0004]2、未考虑 ...
【技术保护点】
【技术特征摘要】
1.一种违约风险评估方法,其特征在于,具体包括:S11获取用户的历史违约次数,并判断所述用户的历史违约次数是否大于第一阈值,若是,则确定所述客户的历史违约风险为高风险,若否,则进入步骤S12;S12获取用户的历史违约数据,并基于所述历史违约数据判断所述用户的违约概率是否大于第一概率阈值,若是,则确定所述客户的历史违约风险为高风险,若否,则进入步骤S13;S13获取所述用户的非结构化数据中的时序数据,并将所述时序数据以及所述时序数据的权值,对所述时序数据进行重构得到重构后的数据并将其作为重构时序数据,并基于所述重构时序数据,采用时序数据风险评估模型确定所述用户的时序违约评分,并判断是否所述用户的时序违约评分大于第一风险阈值且所述用户的违约概率大于第二概率阈值,若是,则确定所述客户的历史违约风险为高风险,若否,则进入步骤S14;S14获取所述用户的非结构数据中的文本数据,并基于所述文本数据以及所述文本数据的权值进行重构得到重构文本数据,并采用基于文本数据风险评估模型确定所述用户的文本违约评分,并基于所述用户的文本违约评分、时序违约评分、违约概率,采用基于机器学习算法的评估模型,得到所述用户的违约风险得分,并基于所述用户的违约风险得分确认所述用户的违约风险。2.如权利要求1所述的违约风险评估方法,其特征在于,所述用户的历史违约次数根据所述用户在第一时间阈值内的违约次数进行确定,所述第一时间阈值不少于一年。3.如权利要求1所述的违约风险评估方法,其特征在于,所述用户的历史违约数据包括所述用户的历史违约次数、历史违约金额、最长违约时间、用户的违约状态,所述用户的违约状态包括处于违约状态和处于非违约状态。4.如权利要求1所述的违约风险评估方法,其特征在于,所述违约概率的评估的具体步骤为:获取所述用户的违约状态,并判断所述用户的违约状态是否为处于违约状态,若是,则确定所述用户的违约概率为1,若否,则进入下一步骤;基于所述用户的历史违约次数、历史违约金额、最长违约时间构建输入集,并基于机器学习算法的预测模型,得到所述用户的基础违约概率,并判断所述基础违约概率是否大于第二概率阈值,若是,则确定所述用户的违约概率为1,若否,则进入下一步骤;基于所述用户的最近一年的违约次数,对所述基础违约概率进行修正,得到所述用户的违约概率。5.如权利要求1所述的违约风险评估方法,其特征在于,所述第一概率阈值根据待评估的用户的数量...
【专利技术属性】
技术研发人员:唐科伟,陈声鸿,
申请(专利权)人:浙江孚临科技有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。