信贷风险预测模型的训练方法及系统技术方案

技术编号:33862340 阅读:8 留言:0更新日期:2022-06-18 10:52
本发明专利技术公开了一种信贷风险预测模型的训练方法及系统,涉及信贷风险领域。本发明专利技术包括以下步骤:获取经济数据样本,经济数据样本包括宏观经济状况,金融机构状况以及信贷者经济状况;将经济数据样本分为训练样本和测试样本;将训练样本输入到预先建立的BP神经网络中,对BP神经网络进行训练,得到第一信贷风险预测模型;将测试样本输入到所述第一信贷风险预测模型中,对所述第一信贷风险预测模型测试,并利用损失函数对所述第一信贷风险预测模型校正,得到信贷风险预测模型。本发明专利技术通过建立银行不良信贷风险评估模型,根据银行不良信贷风险评估指数公式对银行中各个不良信贷指标进行优化处理,从而得到海量数据下的银行不良信贷风险评估结果。良信贷风险评估结果。良信贷风险评估结果。

【技术实现步骤摘要】
信贷风险预测模型的训练方法及系统


[0001]本专利技术涉及信贷风险领域,更具体的说是涉及信贷风险预测模型的训练方法及系统。

技术介绍

[0002]随着现代经济的发展,银行是金融业的主要实体,银行业的稳定影响着整个社会的稳定。信贷风险在银行经营中不可回避,它使得商业银行面临信贷资产损失的可能。银行信贷风险管理要求对风险尽早识别,为管理层在决策阶段获得主动性,从而降低不良贷款发生率,减少信贷资产损失。
[0003]利用传统算法进行海量数据下的银行不良信贷风险评估过程中,由于不良信贷风险的影响因素具有海量性、冗余性,无法根据银行在经营中产生的海量数据信息对银行不良信贷风险进行准确的评估。因此,如何解决上述问题是本领域技术人员亟需解决的。

技术实现思路

[0004]有鉴于此,本专利技术提供了一种信贷风险预测模型的训练方法及系统,以解决
技术介绍
中存在的问题。
[0005]为了实现上述目的,本专利技术采用如下技术方案:
[0006]一种信贷风险预测模型的训练方法,包括以下步骤:
[0007]获取经济数据样本,所述经济数据样本包括宏观经济状况,金融机构状况以及信贷者经济状况;
[0008]将经济数据样本分为训练样本和测试样本;
[0009]将训练样本输入到预先建立的BP神经网络中,对BP神经网络进行训练,得到第一信贷风险预测模型;
[0010]将测试样本输入到所述第一信贷风险预测模型中,对所述第一信贷风险预测模型测试,并利用损失函数对所述第一信贷风险预测模型校正,得到信贷风险预测模型。
[0011]可选的,还包括对经济数据样本进行多维信息衍生,并利用模糊评价模型对衍生出的多维信息进行评价,并挑选符合预先设定阈值的多维信息。
[0012]以上技术方案具有以下有益效果:
[0013]通过模糊评价模型科学客观地评估信贷者的状况,避免商业银行放贷的盲目性,加强商业银行信贷资产管控和预防不良贷款的能力。
[0014]可选的,把衍生出的多维信息做WOE转换后,当作新的衍生变量放入到经济数据样本中。
[0015]可选的,对所述经济数据样本的关联数据进行预处理,并基于所述资源描述框架,自预处理后的经济数据样本的关联数据中抽取经济数据样本的实体三元组数据,以建立新的经济数据样本的知识图谱或更新预存储的经济数据样本知识图谱,并将知识图谱作为训练样本和测试样本。
[0016]可选的,还包括利用RS理论和BP神经网络共同构建第一信贷风险预测模型。
[0017]可选的,所述损失函数采用权重交叉熵损失函数,以调整权重。
[0018]可选的,将经济数据样本分为两部分,其中,70%为训练样本,30%为测试样本。
[0019]一种信贷风险预测模型的训练系统,包括:
[0020]样本获取模块:用于获取经济数据样本,所述经济数据样本包括宏观经济状况,金融机构状况以及信贷者经济状况;
[0021]样本分类模块:用于将经济数据样本分为训练样本和测试样本;
[0022]训练模块:用于将训练样本输入到预先建立的BP神经网络中,对BP神经网络进行训练,得到第一信贷风险预测模型;
[0023]信贷风险预测模型校正模块:将测试样本输入到所述第一信贷风险预测模型中,对所述第一信贷风险预测模型测试,并利用损失函数对所述第一信贷风险预测模型校正,得到信贷风险预测模型。
[0024]经由上述的技术方案可知,与现有技术相比,本专利技术公开提供了信贷风险预测模型的训练方法及系统,通过建立银行不良信贷风险评估模型,根据银行不良信贷风险评估指数公式对银行中各个不良信贷指标进行优化处理,从而得到海量数据下的银行不良信贷风险评估结果。同时能够有效提高信贷风险预测的准确性、全面性及可靠性,且能够有效提高输出的信贷风险预测结果的信息全面性,进而能够有效提高基于信贷风险预测结果进行信贷风险防控的效率、准确性及可靠性,有效节省人力及时间成本,并能够提高防控人员的用户体验。
附图说明
[0025]为了更清楚地说明本专利技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本专利技术的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
[0026]图1为本专利技术的流程示意图;
[0027]图2为本专利技术的结构示意图。
具体实施方式
[0028]下面将结合本专利技术实施例中的附图,对本专利技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本专利技术一部分实施例,而不是全部的实施例。基于本专利技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术保护的范围。
[0029]本专利技术实施例公开了一种信贷风险预测模型的训练方法,如图1所示,包括以下步骤:
[0030]获取经济数据样本,经济数据样本包括宏观经济状况,金融机构状况以及信贷者经济状况;
[0031]将经济数据样本分为训练样本和测试样本;需要说明的是,将经济数据样本分为两部分,其中,70%为训练样本,30%为测试样本。
[0032]将训练样本输入到预先建立的BP神经网络中,对BP神经网络进行训练,得到第一信贷风险预测模型;
[0033]将测试样本输入到第一信贷风险预测模型中,对第一信贷风险预测模型测试,并利用损失函数对第一信贷风险预测模型校正,得到信贷风险预测模型。损失函数采用权重交叉熵损失函数,以调整权重。
[0034]其中,还包括对经济数据样本进行多维信息衍生,并利用模糊评价模型对衍生出的多维信息进行评价,并挑选符合预先设定阈值的多维信息。通过模糊评价模型科学客观地评估企业的信贷状况,避免商业银行放贷的盲目性,加强商业银行信贷资产管控和预防不良贷款的能力。
[0035]进一步的,把衍生出的多维信息做WOE转换后,当作新的衍生变量放入到经济数据样本中。
[0036]更进一步的,在进行海量数据下的银行不良信贷风险评估过程中,建立神经网络模型,其中包含了多个银行不良信贷信息的输入层、隐含层和输出层,隐含层又称扩展层,由于各个神经元具有较强的关联性,将每层的银行不良信贷信息神经元进行相互连接,从而完成基于神经网络的优化建模。
[0037]在本实施例中,对经济数据样本的关联数据进行预处理,并基于资源描述框架,自预处理后的经济数据样本的关联数据中抽取经济数据样本的实体三元组数据,以建立新的经济数据样本的知识图谱或更新预存储的经济数据样本知识图谱,并将知识图谱作为训练样本和测试样本。
[0038]在另一实施例中,还可以利用RS理论和BP神经网络共同构建第一信贷风险预测模型,具体如下:
[0039]1)根据RS理论构建银行不良信贷信息风险评估指标体系,并剔除大量的冗余信息。
[0040]2)利用函数f:U
×
R
...

【技术保护点】

【技术特征摘要】
1.一种信贷风险预测模型的训练方法,其特征在于,包括以下步骤:获取经济数据样本,所述经济数据样本包括宏观经济状况,金融机构状况以及信贷者经济状况;将经济数据样本分为训练样本和测试样本;将训练样本输入到预先建立的BP神经网络中,对BP神经网络进行训练,得到第一信贷风险预测模型;将测试样本输入到所述第一信贷风险预测模型中,对所述第一信贷风险预测模型测试,并利用损失函数对所述第一信贷风险预测模型校正,得到信贷风险预测模型。2.根据权利要求1所述的一种信贷风险预测模型的训练方法,其特征在于,还包括对经济数据样本进行多维信息衍生,并利用模糊评价模型对衍生出的多维信息进行评价,并挑选符合预先设定阈值的多维信息。3.根据权利要求2所述的一种信贷风险预测模型的训练方法,其特征在于,把衍生出的多维信息做WOE转换后,当作新的衍生变量放入到经济数据样本中。4.根据权利要求1所述的一种信贷风险预测模型的训练方法,其特征在于,对所述经济数据样本的关联数据进行预处理,并基于所述资源描述框架,自预处理后的经济数据样本的关联数据中抽取经济数据样本的实体三元组数据,以建立新的经济数据样...

【专利技术属性】
技术研发人员:韩彧苏树清
申请(专利权)人:深圳微言科技有限责任公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1