【技术实现步骤摘要】
融合道路多元特征的车载激光雷达点云非刚性配准方法
[0001]本专利技术涉及车载激光雷达数据处理领域,具体涉及一种融合道路多元特征的车载激光雷达点云非刚性配准方法。
技术介绍
[0002]车载激光雷达(LiDAR)技术作为移动测量领域正处于快速发展的一种地理信息获取与处理技术,在平台移动过程中能实时测量道路面以及道路环境的几何信息和激光回波强度信息,以及GNSS/IMU组合系统(POS)所获载体的位置、姿态、速度等轨迹信息,具有三维数据获取速度快、更新周期短、数据处理自动化程度高、实景全要素“复制”等特点,在道路工程、街道工程、三维建模、无人驾驶三维高精度地图生产中应用广泛。
[0003]但是,当前的车载激光雷达技术仍然无法赶上多应用领域对于厘米级高精度点云获取的追求,究其原因是在于点云数据采集环境越来越复杂,使三维点云的采集总会因为各种原因而出现一定的误差,尤其是对于情况复杂多变的城市场景。
[0004]城市场景的道路网交错、层叠,构筑物复杂,建筑、行道树、高架桥等人工构筑物往往导致移动测量中车载LiDAR ...
【技术保护点】
【技术特征摘要】
1.融合道路多元特征的车载激光雷达点云非刚性配准方法,其特征在于,包括以下步骤:步骤一,面向对象的点云非刚性配准,通过对车载激光雷达采集的数据进行分区域对象提取和内部匹配,建立广义同名对应;步骤二,模型数据混合驱动的位姿优化,对POS系统误差进行时变建模,并结合广义同名对应和稀疏分布的地面控制外部参考进行整体优化,获得修正后的最优POS系统位姿;步骤三,校正点云三维坐标,将修正后获得的整体最优车载激光雷达测量POS系统状态参数在修正后的三维坐标系上对点云三维坐标偏差进行校正,得到校正后的点云三维坐标。2.根据权利要求1所述的融合道路多元特征的车载激光雷达点云非刚性配准方法,其特征在于,在步骤三中,所述校正点云三维坐标为,稀疏控制增强的误差校正,通过以稀疏地面控制为绝对坐标参考,将配准后的车载激光雷达测量参数在修正后的三维坐标系上对点云三维坐标偏差进行校正,得到校正后的点云三维坐标。3.根据权利要求1所述的融合道路多元特征的车载激光雷达点云非刚性配准方法,其特征在于,在步骤一中,所述通过对车载激光雷达采集的数据进行内部匹配为,对车载激光雷达法采集的数据依次进行的点云时空划分、非动态对象层次提取、非刚性粗配准、非刚性精配准和广义同名对应建立;其中,所述车载激光雷达采集的数据包括点云数据和轨迹状态数据。4.根据权利要求3所述的融合道路多元特征的车载激光雷达点云非刚性配准方法,其特征在于,所述非动态对象层次提取为,依次进行的道路面及道路面标志提取、地面点滤波、杆状物/线状物提取和构筑物面提取。5.根据权利要求3所述的融合道路多元特征的车载...
【专利技术属性】
技术研发人员:谭骏祥,李少达,刘华,杨容浩,曾志鹏,唐杰,
申请(专利权)人:成都理工大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。