当前位置: 首页 > 专利查询>HOYA株式会社专利>正文

半导体材料以及采用该半导体材料的半导体元件制造技术

技术编号:3188907 阅读:195 留言:0更新日期:2012-04-11 18:40
本发明专利技术提供了一种容易与金属材料进行欧姆接触的、低电阻的p型ZnS系半导体材料。本发明专利技术还提供了一种在玻璃基板等的单晶基板以外的基板上具有低电阻的电极的半导体元件或半导体发光元件。本发明专利技术的半导体材料作为发光元件的空穴注入用电极层使用,其结构式为Zn↓[(1-α-β-γ)]Cu↓[α]Mg↓[β]Cd↓[γ]S↓[(1-x-y)]Se↓[x]Te↓[y](0.004≤α≤0.4,β≤0.2,γ≤0.2,0≤x≤1,0≤y≤0.2,x+y≤1),在可见区域具有透光性。

【技术实现步骤摘要】
【国外来华专利技术】
本专利技术涉及半导体材料以及采用此半导体材料的半导体元件,特别涉及由ZnSe、ZnS或其混晶构成、易于与电极进行欧姆接触的低电阻的透光性p型半导体,以及采用此透光性p型半导体的半导体元件和半导体发光元件。
技术介绍
作为所谓“宽禁带半导体(wide gap semiconductor)”而备受瞩目的ZnS、ZnSe半导体的带隙分别为约3.7eV、2.7eV,特别是,其被作为从蓝到绿的光电发光材料而正处于大力开发之中(以下,将以该ZnS、ZnSe半导体作为主成分的化合物半导体称为ZnS系半导体)。由于这些半导体的n型化比较容易实现,而低电阻p型化却难于实现,因而目前正在进行各种各样的技术开发。对于ZnSe的p型化,已经采用了将氮(N)作为掺杂剂的技术。该技术如专利文献1所述,在以ZnSe或GaAs的单晶作为衬底、通过采用了MBE(分子束外延)方法的外延生长进行成膜时,同时照射氮(N)自由基,将N导入晶格中,从而得到p-ZnSe。MBE法是一种需要高真空度的成膜技术,为了有效生成N自由基,必须要有精密控制的自由基源,因此在其生产性上存在工业性的问题。而且有报导指出,ZnSe的基于N的载流子浓度的上限为1018cm-3(非专利文献1)。因此,对于元件中的应用,电阻率还不够,进一步,目前希望开发出电阻低并具有良好的p型半导体特性的材料。另外,现有的p-ZnSe由于载流子浓度并不够高,因此存在下述问题,即,无法使用电极金属形成欧姆接触。因此,以往采用了在电极金属和p-ZnSe之间形成利用了容易实现p型低电阻化的ZnTe的多量子阱(MQW)结构的技术,但是,存在这个问题由于这种结构中产生焦耳热,因而工作中晶格缺陷增加,电阻增加,可能导致元件劣化(非专利文献2)。而且,由于ZnTe是带隙为2.3eV的物质,因而对波长为540nm以下的光具有强的光吸收。因此存在下述问题对于以比该波长范围更短的波长进行发光的发光元件,无法期望其具有高的取出效率(发光效率)。ZnS的价电子带上端能量比ZnSe更深,是比ZnSe更难实现p型低电阻化的材料。目前尚未开发出稳定的制作p-ZnS的技术。因此,至多仅能使其电阻率降低至102Ωcm,这对于元件应用还是不够的。以往报导了在ZnS、ZnSe中添加Cu时,分别形成约1250meV、650meV的深的受主能级(非专利文献3)。但并没有研究通过添加Cu使这些材料低电阻化。这是因为,由于室温下的热能约为26meV,完全不能期待从这样深的能级实现载流子的活性化。在以上的状况中,作为以往的研究对象的Cu添加浓度至多为1019cm-3(相当于0.05at%或α=0.001左右)。已知Cu如上所述在ZnS、ZnSe中形成深的受主能级。从该受主能级位置起估计的载流子活性化比率(载流子浓度与添加Cu浓度之比)在室温下至多为10-5或其以下。例如,在1019cm-3的浓度(相当于0.05at%或α=0.001左右)下添加Cu时获得的载流子浓度为1014cm-3,在1021cm-3的浓度(相当于5at%或α=0.1左右)下添加Cu时获得的载流子浓度估计至多为1016cm-3,最终无法获得能够实用的电气特性。另外,近年来,在半导体发光元件领域,由玻璃基板或树脂基板上形成元件成为重要的课题,与此相伴而生的就是,对于电极层或活性层也要求适用非晶相或多晶相。可是,以往的ZnS系p型半导体材料必须是单晶材料或者外延生长膜。其中,作为同质外延用基板,采用了ZnS或ZnSe的单晶,作为异质外延用基板,采用了具有类似结晶构造且晶格常数差小的GaAs或Si等的单晶。作为这些外延生长膜的成膜时的基板温度,必须要300℃或其以上的高温。以上都是制作出缺陷少的、优质的外延膜的必要条件。也就是说,只有缺陷少的优质的单晶才能获得p型半导体的特性,因此,必须要提高成膜温度。另一方面,当使这些材料成为多晶相或非晶相的时候,会导入在晶粒边界处产生的晶格缺陷或者由晶格畸变引起的晶格缺陷,结果产生这样的问题会在这些晶格缺陷中捕获载流子。由此,掺杂剂的活性化被抑制,不可能得到良好的低电阻材料。在这种状况下,至今还未尝试过在单晶或外延膜的形态以外利用ZnS系p型半导体材料。专利文献1日本特许3078611(专利权人Minnesota Mining &Manufacturing,University of Florida)非专利文献1Journal of Crystal Growth,Vol.197(1999)、pp.557-564/W.Faschinger非专利文献2Journal of Crystal Growth,Vol.214/215(2000)、pp.1064-70/A.Katayama et al. 非专利文献3光物性手册(朝仓书店,1984年)pp.182-185
技术实现思路
在这种状况下,迄今为止,还未能把Cu作为添加剂加到ZnS、ZnSe等的ZnS系半导体中而实现p型低电阻化。以往研究的Cu添加浓度至多为1019cm-3(相当于0.05at%或α=0.001左右)的浓度,在这种状况下,如前所述,存在下面的背景1.已知在开发的初期阶段,Cu形成了深的受主能级,2.已知在添加了Cu的ZnS中,Cu添加浓度在0.01at%以上时发光效率显著劣化,即所谓辉度饱和,作为光电材料不会对此以上的Cu浓度范围感兴趣。鉴于上述状况,在这些材料中并没有就更高Cu浓度范围中的电气特性进行研究,获得低电阻的p型半导体、特别是能够作为电极使用的低电阻p型ZnS系半导体是极其困难的。本专利技术就是鉴于上述情况作出的,其目的是提供一种容易制作的、容易实现与金属材料的欧姆接触的低电阻p型ZnS系半导体材料。而且,本专利技术另一个目的在于提供一种在玻璃基板等的单晶基板以外的基板上具有低电阻的电极的半导体元件以及半导体发光元件。为了解决上述课题,本专利技术的半导体材料的特征为其由添加Cu的p型ZnS系半导体构成。并且,在本专利技术的半导体材料中,所述ZnS系半导体材料包括用结构式(Zn1-α-β-γCuαAβBγS1-x-ySexTey)(0.004≤α≤0.4,β≤0.2,γ≤0.2,0≤x≤1,0≤y≤0.2,x+y≤1,A、B为从Cd、Hg、碱土类金属中选择的元素)表示的半导体材料。本专利技术的半导体材料包括所述结构式的半导体材料中的A为Mg、B为Cd的半导体材料。这里,半导体材料介质既可以为ZnS或ZnSe,也可以为它们的混晶材料。本专利技术的本质就在于发现了通过在ZnS、ZnSe或它们的混晶材料中添加以往不可能的大量的Cu,使现有技术无法预料的低电阻p型半导体化成为可能。本专利技术的专利技术人们发现,当将Cu添加浓度α设定为0.004~0.4(0.2~20at%)时,ZnS系材料低电阻p型半导体化。经过这样添加的材料不论是单晶、多晶、非晶的任意一相,均表现出体积电阻率为10Ωcm以下的p型低电阻半导体特性。而且,由于在可见光区域不产生强的光吸收,其透光性与所使用的基材即没有掺Cu的ZnS系材料相比几乎没有变化。还未发现在可见光区域具有透光性而且是多晶体、电阻率如此之小的ZnS系材料。虽然得到这种特性的原因的细节还不明确,但认为是由于Cu浓度增加,Cu-Cu间距离本文档来自技高网
...

【技术保护点】
一种p型半导体材料,其特征在于,所述p型半导体材料由结构式Zn↓[(1-α-β-γ)]Cu↓[α]A↓[β]B↓[γ]S↓[(1-x-y)]Se↓[x]Te↓[y](0.004≤α≤0.4,β≤0.2,γ≤0.2,0≤x≤1,0≤y≤0.2,x+y≤1,A、B为从Cd、Hg、碱土类金属中选择的元素)表示。

【技术特征摘要】
【国外来华专利技术】JP 2004-2-6 031086/20041.一种p型半导体材料,其特征在于,所述p型半导体材料由结构式Zn(1-α-β-γ)CuαAβBγS(1-x-y)SexTey(0.004≤α≤0.4,β≤0.2,γ≤0.2,0≤x≤1,0≤y≤0.2,x+y≤1,A、B为从Cd、Hg、碱土类金属中选择的元素)表示。2.如权利要求1所述的p型半导体材料,其特征在于,所述A为Mg。3.如权利要求1或2所述的p型半导体材料,其特征在于,所述B为Cd。4.如权利要求1至3中任意一项所述的p型半导体材料,其特征在于,所述半导体材料含有从Cl、Br、I、Al、Ga、In中选择的至少1种掺杂剂作为补偿掺杂剂,所...

【专利技术属性】
技术研发人员:柳田裕昭川副博司折田政宽
申请(专利权)人:HOYA株式会社
类型:发明
国别省市:JP[日本]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1