【技术实现步骤摘要】
基于深度学习用于配电类设施开关检测识别算法
[0001]本专利技术涉及识别算法
,具体来说,涉及基于深度学习用于配电类设施开关检测识别算法。
技术介绍
[0002]电气设备是组成电力系统的基本元件,是保证供电可靠性的基础,而为了便于实现对电气设备的操控,往往需要在电气设备的控制面板上设置有若干控制按钮或旋钮开关。同时为了保证电气设备的顺利运行,需要对控制面板上的控制按钮或旋钮开关进行实时检测,从而来判断电气设备是否运行正常。
[0003]目前,传统的旋钮开关检测方法一般有以下几种方法:1、目测法,这种识别方法只适用于人眼实时观察,在缺乏人力及无人情况下无法完成任务,且人力成本相对较高。2、基于传统图像算法的旋钮开关识别方法,这种识别方法识别速度较慢,且不能准确识别旋钮开关的指向,又可能把设备上其他的物体识别成旋钮开关,准确率不高,且对图像的质量要求较高,算法鲁棒性较低,存在较多误检、漏检。
[0004]针对相关技术中的问题,目前尚未提出有效的解决方案。
技术实现思路
[0005]针对相关 ...
【技术保护点】
【技术特征摘要】
1.基于深度学习用于配电类设施开关检测识别算法,其特征在于,该算法包括以下步骤:S1、收集待识别旋钮开关的照片,并对照片中的旋钮开关的位置进行标注;S2、采用预设方法搭建深度学习神经网络,并对已标注的照片进行特征提取,保存训练的模型;S3、利用训练好的深度学习神经网络模型对需要识别的图片进行识别,检测出旋钮开关及其旋转中心和指向点的位置。2.根据权利要求1所述的基于深度学习用于配电类设施开关检测识别算法,其特征在于,所述S1中的标注内容包括旋钮开关的位置对应关系和旋钮开关关键点的位置对应关系,且标注结果保存为xml文件,每个xml文件与照片一一对应;其中,所述旋钮开关的位置x1、y1、x2、y2分别对应旋钮开关左上角的横纵坐标及旋钮开关右下角的横纵坐标;所述旋钮开关关键点的位置centerx、centery、directx、directy分别对应旋钮开关的旋转中心的横纵坐标以及旋钮开关指向端的开关指向标志端点横纵坐标。3.根据权利要求1所述的基于深度学习用于配电类设施开关检测识别算法,其特征在于,所述S2中采用预设方法搭建深度学习神经网络,并对已标注的照片进行特征提取,保存训练的模型包括以下步骤:S201、搭建深度学习神经网络,并对已标注的照片进行特征提取;S202、基于旋钮开关分类损失、旋钮开关框回归损失及旋钮开关关键点回归损失构建损失函数;S203、使用标注好的数据对搭建的网络进行训练,采用所述损失函数对搭建好的网络参数进行反向推导,保存训练的模型。4.根据权利要求3所述的基于深度学习用于配电类设施开关检测识别算法,其特征在于,所述S201中深度学习神经网络的搭建包括Backbone、Neck及Head三个部分。5.根据权利要求4所述的基于深度学习用于配电类设施开关检测识别算法,其特征在于,所述Backbone部分采用CSPNet实现跨阶段部分连接,并通过CSPNet实现在不同图像细粒度上聚合形成图像特征,同时采用Swish激活函数训练构建的深度学习神经网络,其中,Swish激活函数的函数表达式为f(x)=x*sigmoid(x)。6.根据权利要求4所述的基于深度学习用于配电类设施开关检测识别算法,其特征在于,所述Neck部分采用BiFPN用于生成图像金字塔,同时用于混合并组合图像特征;其中,所述BiFPN接受来自主干网络的level3
‑
7的特征{P3,P4,P5,P6,P7},并重复应用自上而下和自下而上的双向特征融合,具体公式如下:Pout7=C...
【专利技术属性】
技术研发人员:朱博,
申请(专利权)人:北京超维世纪科技有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。