液晶显示器的栅极驱动方法与电路技术

技术编号:3030074 阅读:126 留言:0更新日期:2012-04-11 18:40
一种液晶显示器的栅极驱动方法与电路,其中液晶显示器具有多条扫描线。此方法包括:产生栅极驱动信号;将极性与栅极驱动信号相反的修正信号叠加至栅极驱动信号,产生修正栅极驱动信号,以降低栅极驱动信号的高电位电平;以及输出修正栅极驱动信号,并且以修正栅极驱动信号去驱动对应的该些扫描线之一。

【技术实现步骤摘要】

本专利技术涉及一种液晶显示器的改进方法,且特别涉及一种减少液晶显示器画面闪烁及增加充电时间的方法。
技术介绍
液晶显示器近年来越来越受欢迎,不但能够节省空间,而且能够降低耗电量,现在渐渐的大尺寸、高分辨率的液晶显示器用来代替传统的显示器,就像阴极射线管显示器(CRT display),然而在大尺寸的液晶显示器具有一个重要的问题,那就是液晶显示器的屏幕尺寸越大,则液晶显示器屏幕上的闪烁问题越严重。图1为液晶显示器(Liquid Crystal Display,LCD)的基本结构,栅极驱动器(Gate driver)102负责打开及关闭薄膜晶体管(Thin FilmTransistor,TFT),而源极驱动器(Source driver)101则负责输出数据给液晶电容,使液晶电容上的电压在薄膜晶体管打开的时间内能够到达该有的电平。传统上,液晶显示器上的栅极驱动器IC(Gate driver IC)102a输出启动信号依次打开薄膜晶体管,使源极驱动器IC(Source driverIC)101a将数据送入液晶电容里,然而由于液晶显示器天生特性的关系,容易使画面产生闪烁(flicker)现象。如图2所示,图2为液晶显示面板里子像素(subpixel)的示意图。一般而言,每一个LCD子像素由一个开关元件(例如晶体管TFT)以及连接在晶体管TFT的漏极(Drain,D)上的液晶电容CLC与保持电容Cst构成。多个前述子像素构成一个排成行列状的阵列,在同一列的子像素以各个子像素的晶体管栅极(Gate,G)连接到扫描线,而同一行的子像素则以各个子像素的晶体管源极(Source,S)连接到数据线。如图2所示,当第Gn条扫描线被选择到时,即液晶显示器上的栅极驱动器IC输出启动信号给第Gn条扫描线,亦即到晶体管TFT的栅极G;接着数据信号波形传送到第Sn条的数据线。此时晶体管TFT便被打开,数据经由晶体管TFT源极S传送到漏极D,进而对液晶电容CLC与保持电容Cst充电。依据液晶电容CLC的跨压,子像素可以对应显示出该子像素的灰度,以达到显示影像的作用。保持电容Cst则可以在这个显示周期内,维持液晶电容CLC的跨压。在图2所示的输出的启动信号波形为方波,由于面板半导体工艺的原因,其扫描线上会有杂散电容与电阻产生,进而产生RC延迟(RCdelay),导致波形失真。如图3A为液晶显示器上的栅极驱动器IC输出的启动波形信号,其中VGH、VGL分别为启动信号波形的最高及最低电平,ΔVGH为最高电平与最低电平之差,图3B为经过一段扫描线受到扫描线上杂散电阻、电容影响后的波形,图3C则为扫描线后半部的波形,其中V1为波形失真后的最高电平,ΔV1为波型失真后的最高电平与最低电平之差,由此可以清楚看出启动信号波形因受到扫描线上RC延迟的影响,到最后的波形已经和原来的波形不一样并且面板尺寸越大失真的情况就会越严重,于是扫描线上越后端的启动波形信号,越需要花更多的时间才能达到电平(即为VGH、VGL)。此外,为了确保当第Gn+l条扫描线启动时,第Gn条扫描线上所有的薄膜晶体管已经关闭,一般在技术上液晶显示器上的栅极驱动器IC会藉由输出栅极输出使能(Gate Output Enable,GOE)信号来确保上下两条相邻的扫描线不会同时启动,其时序关系如图4所示,原本一条扫描线充电的时间是t4,也就是一个时脉的大小,但因为加入了栅极输出使能信号,时间被缩短了Δt的长度,所以扫描线实际的充电时间为t5,若面板分辨率越高,时脉周期的时间t4也就相对会越小,又面板尺寸越大,扫描线相对也会变长,RC延迟的情况也会变得更加严重,Δt就必须要变大,以避免相邻扫描线同时启动。因为目前液晶显示器尺寸越来越大,分辨率也越来越高的趋势,在充电的时间t4的长度相对变短,而Δt又必须维持一定大小的双重影响下,实际充电时间t5的长度变得更短,使得充电时间更加不足,因此这将对液晶显示器朝向大尺寸以及高清晰的目标上,产生不可忽视的影响。液晶显示器的另一个驱动上的缺点则是会产生馈通电压(Vfeedthrough)效应,其定义如下所示Vfeedthrough=CGDCGD+CLC+CstΔV,ΔV=(V-VGL)......(1)]]>其中CGD为薄膜晶体管(TFT)栅极和漏极之间的杂散电容,CLC为液晶电容,Cst为保持电容,ΔV为启动信号波形结束时的压差。如图5所示,图5为正图场与负图场示意图,当液晶电容上的电压在薄膜晶体管打开的时间内,充电到所需电平,但在信号截止时,因为薄膜晶体管栅极和漏极之间的杂散电容(CGD)的缘故,所以电压会比原本的电平再下降ΔVa,造成液晶电容(CLC)在正负图场时对共同电压Vcom之间的压差不同,而这会让画面产生闪烁(flicker)现象。目前一般的解决方法是藉由调整共同电压Vcom,使液晶电容对共同电压之间的压差在正负图场时相同,如图5中虚线所示,为调整后之共同电压V′com值,如此就不会有画面闪烁的情形发生。上述情形为理想情形,若每个液晶子像素的馈通电压效应都一样,则毫无疑问可以藉由调整共同电压Vcom来有效解决液晶显示器上出现闪烁的现象。但实际上因工艺等其他因素,则会造成每个液晶子像素的馈通电压效应不一样,以至于效果有限。如图3A、3B、3C以及公式(1)所示,同一条扫描线前端和后端的启动信号波形结束时的压差ΔV是不一样的,其中波形失真后的最高电平V1小于启动信号波形的最高电平VGH,即扫描线后端启动信号的最高电平与最低电平之差ΔV1小于扫描线前端启动信号的最高电平与最低电平之差ΔVGH,造成扫描线前端所产生的馈通电压Vfeedthrough和后端所产生的馈通电压Vfeedthrough不相等,这时调整共同电压Vcom也无法使得同一条扫描线前后两端液晶电容上,电压对共同电压Vcom之间的压差相同,以至于无法有效解决画面闪烁的问题。有别于上述解决画面闪烁的第二种方式,为了降低馈通电压效应,可利用一种削角功能的波形,如图6A所示,藉由此功能使得启动信号波形结束时的压差ΔV由最高电平与最低电平之差ΔVGH变成新的最高电平与最低电平之差ΔV′GH,因为启动信号波形结束时的压差ΔV变小,所以馈通电压效应也跟着变小,但是这种方法依旧无法改变扫描线因为RC延迟所造成波形失真而带来的影响,如图6B所示,因为RC延迟的缘故,扫描线后端的波形会上升得比较慢,造成当启动削角功能时的电压电平就不一样,也就是说最高电平VGH会大于波形失真后的最高电平V2,如此削角后的电平也就不一样,即新的最高电平与最低电平之差ΔV′GH会大于波形失真后新的最高电平与最低电平之差ΔV′2,故由图6A、6B可知,虽然馈通电压效应降低,但扫描线前后两端对共同电压Vcom的压差依旧不同,故仍然无法有效解决画面闪烁的问题。由上述可知,液晶显示器仍有需要改进的地方,一个是要增加液晶电容的充电时间,另一个则是要降低扫描线因为RC效应所带来的影响,使前后端的馈通电压Vfeedthrough尽量接近。
技术实现思路
本专利技术的目的就是在提供一种液晶显示器的驱动方法与电路,其可以将同一条扫描线前端与后端的馈通电压的差值降到最低,以减少画面的闪烁。本专利技术本文档来自技高网
...

【技术保护点】
一种液晶显示器的栅极驱动方法,该液晶显示器具有多条扫描线,该液晶显示器的栅极驱动方法包括:    产生一个栅极驱动信号;    将极性与该栅极驱动信号相反的一个修正信号叠加到该栅极驱动信号,产生一个修正栅极驱动信号,以降低该栅极驱动信号的高电位电平;以及    输出该修正栅极驱动信号,并且以该修正栅极驱动信号驱动对应的该些扫描线之一。

【技术特征摘要】

【专利技术属性】
技术研发人员:许文法易建宇
申请(专利权)人:友达光电股份有限公司
类型:发明
国别省市:71[中国|台湾]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1