一种轨道综合检测与诊断方法技术

技术编号:27770459 阅读:9 留言:0更新日期:2021-03-23 12:41
本发明专利技术公开了一种轨道综合检测与诊断方法,包括以下步骤:S11)前端传感组件进行所有通道原始传感信号的激发与反馈信号的采集;S12)伤损检测信号处理组件进行各通道传感器反馈信号的采集和并行处理,并对各通道传感器反馈信号进行实时管理、控制及目标结果数据处理;S13)智能识别处理计算机对伤损检测信号处理组件输出的数据进行智能化识别处理,完成最终伤损数据的解算、处理及动态输出。本发明专利技术能解决现有钢轨伤损检测方式存在的检测手段单一,智能化程度低,无法实现对铁路钢轨全方位伤损检测以及全面健康状态诊断的技术问题。

【技术实现步骤摘要】
一种轨道综合检测与诊断方法
本专利技术涉及轨道工程机械
,尤其是应用于铁路路轨无损检测的轨道综合检测与诊断方法。
技术介绍
当前,随着铁路运输的大力发展,我国的铁路建设里程与日俱增,铁路行车高密度化、高速度化以及重载化逐渐成为现代铁路的主要特点,铁路钢轨的结构性能和健康状态对于确保铁路运输的安全性至关重要。铁路钢轨在列车长期高速、高密度的行驶过程中,容易产生各种各样的疲劳裂纹及磨损,这些前期伤损随着时间的推移,还会进一步持续发展,达到一定期限后,可以发展成为重伤,从而导致钢轨断裂,造成破坏性较大的安全事故。因此,对钢轨进行快速、准确的缺陷检测、识别具有十分重要的意义。目前,针对铁路钢轨的伤损检测主要采用无损检测技术,即根据被测材料结构异常或缺陷处引起的电、磁、声、光、热等反应的变化,结合现代化测控技术,来检测被测对象内部或者表面是否存在缺陷,并进一步评价被测对象的使用性能。如:公告号为CN207300984U的中国技术专利公开了一种铁路钢轨探伤系统,包括:轮探头,用于进行铁路钢轨探伤,生成超声波射频信号;信号调理电路,与轮探头连接,用于对超声波射频信号进行信号调理;AD转换器,与信号调理电路连接,用于将信号调理后的超声波射频信号进行模数转换;可编程逻辑门阵列,与AD转换器连接,用于对模数转换后的超声波射频信号进行数字信号处理,将超声波射频信号转换为A型波形;对A型波形进行信号特征提取,所提取的特征用于生成B型图形及实时监控铁路钢轨探伤系统的状态。又如:公开号为CN110246134A的中国专利技术申请公开了一种钢轨伤损分类装置,包括:伤损图库建立模块、特征提取模块、伤损分类模块及分类结果显示模块。伤损图库建立模块基于标定的伤损图像数据创建伤损图库。特征提取模块提取伤损图库中伤损图像的特征值并组成特征向量。伤损分类模块对每类伤损图像的特征向量进行训练,得到伤损图像的最优分类函数,并将未经训练的伤损图像的特征向量输入最优分类函数进行测试。分类结果显示模块对伤损图像的分类测试结果进行可视化输出。然而,由于钢轨伤损的种类繁多,形成原因多样,上述现有技术均采用单一的检测技术手段,智能化程度低,无法实现对众多类型铁路钢轨伤损的全方位检测以及全面健康状态诊断。
技术实现思路
有鉴于此,本专利技术的目的在于提供一种轨道综合检测与诊断方法,以解决现有钢轨伤损检测方式检测手段单一,智能化程度低,无法实现对众多类型铁路钢轨伤损的全方位检测以及全面健康状态诊断的技术问题。为了实现上述专利技术目的,本专利技术具体提供了一种轨道综合检测与诊断方法的技术实现方案,轨道综合检测与诊断方法,包括以下步骤:S11)前端传感组件进行所有通道原始传感信号的激发与反馈信号的采集;S12)伤损检测信号处理组件进行各通道传感器反馈信号的采集和并行处理,并对各通道传感器反馈信号进行实时管理、控制及目标结果数据处理;S13)智能识别处理计算机对所述伤损检测信号处理组件输出的数据进行智能化识别处理,完成最终伤损数据的解算、处理及动态输出。进一步的,所述前端传感组件包括速度编码器、摄像传感装置、漏磁传感装置及超声传感装置。所述摄像传感装置包括红外激光传感器及线扫描相机,所述漏磁传感装置包括激励线圈、磁芯及磁敏感阵列,所述超声传感装置包括超声晶片。所述步骤S11)包括:将所述速度编码器安装于轮对的联轴器上,轮对的转动带动速度编码器产生矩形脉冲信号,通过该脉冲信号计算行驶里程和当前车速;将所述摄像传感装置安装于钢轨上方的车体上,且与所述钢轨保持设定距离;通过所述红外激光传感器向钢轨外表面进行照射,然后采用线扫描相机对钢轨外表面的图像进行拍摄;将所述漏磁传感装置安装于钢轨上方的车体上,所述激励线圈缠绕在磁芯上,所述磁敏感阵列设置于磁芯的下部,并与钢轨保持设定距离;所述激励线圈通电后,磁芯产生感应磁场完成对钢轨近表面的磁化,同时磁敏感阵列完成对伤损漏磁信号的接收;所述漏磁传感装置上还设置有提离值传感器,以确保所述漏磁传感装置与钢轨保持设定的安全距离;将所述超声传感装置安装于钢轨上方的车体上,高压脉冲信号作用于所述超声晶片上,产生相应的超声信号入射之钢轨的内部,同时所述超声晶片通过逆压电效应接收伤损的回波信号。进一步的,所述伤损检测信号处理组件包括实时控制器、速度及里程处理单元、图像信号处理单元、漏磁信号处理单元及超声信号处理单元。所述步骤S12)包括:所述伤损检测信号处理组件对前端传感组件采集的信号进行高速数字信号处理,然后从中提取出目标结果数据,再发送至智能识别处理计算机。所述实时控制器与速度及里程处理单元、图像信号处理单元、漏磁信号处理单元及超声信号处理单元之间采用并行高速数据总线通信。所述实时控制器与智能识别处理计算机之间通过高速以太网通信进行数据交互。进一步的,所述图像信号处理单元包括图像左处理单元及图像右处理单元,所述图像左处理单元及图像右处理单元均包括图像信号处理及控制模块、相机控制模块及图像信号接收模块。所述步骤S12)还包括:所述图像信号处理及控制模块实时接收来自于高速数据总线的图像触发信号,并将控制信号发送至相机控制模块。所述相机控制模块直接与摄像传感装置进行信号接口,并启动红外激光传感器产生红外光源对钢轨的外表面进行照射,同时线扫描相机对钢轨的轨面进行图像拍摄。图像画面数据通过网络通信发送至所述图像信号接收模块,然后再传送至图像信号处理及控制模块进行相应的图像数字信号处理,最终处理完的图像数据结果通过高速数据总线传输至的实时控制器。进一步的,所述漏磁信号处理单元包括漏磁左处理单元及漏磁右处理单元,所述漏磁左处理单元及漏磁右处理单元均包括漏磁信号处理及控制模块、信号调理模块、提离值计算模块、激励控制模块、霍尔传感器阵列信号采集模块及提离传感器信号采集模块。所述步骤S12)还包括:所述漏磁信号处理及控制模块实时监测来自于高速数据总线的漏磁触发信号,当漏磁触发信号有效时,发送控制命令至激励控制模块,此时所述激励线圈被施加激励电源,所述磁芯产生磁化场,所述磁敏感阵列接收到相应的磁场信号;所述磁敏感阵列采集到的漏磁信号被传送至信号调理模块进行包括隔直、放大、滤波在内的信号处理,最后传送至漏磁信号处理及控制模块,实现目标伤损波形提取、幅值计算及阈值判断,最终的漏磁伤损数据结果通过高速数据总线发送至实时控制器。所述提离传感器信号采集模块采集提离值传感器信号,并将其发送至提离值计算模块,从而实时获取所述漏磁传感装置相对于钢轨表面的距离。所述提离值计算模块将计算得到的提离值输出至信号调理模块,所述信号调理模块根据提离值对放大处理的增益值进行调整以补偿提离值波动对漏磁采集信号带来的影响。进一步的,所述超声信号处理单元包括超声左处理单元及超声右处理单元,所述超声左处理单元及超声右处理单元均包括逻辑控制与数字信号处理模块、回波滤波放大模块、超声高压激发模块及回波高速采样模块。所述步骤S12)还包括:所述逻辑控制与数字信号处理模块实时监测来自于高速数据总线本文档来自技高网
...

【技术保护点】
1.一种轨道综合检测与诊断方法,其特征在于,包括以下步骤:/nS11)前端传感组件(20)进行所有通道原始传感信号的激发与反馈信号的采集;/nS12)伤损检测信号处理组件(10)进行各通道传感器反馈信号的采集和并行处理,并对各通道传感器反馈信号进行实时管理、控制及目标结果数据处理;/nS13)智能识别处理计算机(12)对所述伤损检测信号处理组件(10)输出的数据进行智能化识别处理,完成最终伤损数据的解算、处理及动态输出。/n

【技术特征摘要】
1.一种轨道综合检测与诊断方法,其特征在于,包括以下步骤:
S11)前端传感组件(20)进行所有通道原始传感信号的激发与反馈信号的采集;
S12)伤损检测信号处理组件(10)进行各通道传感器反馈信号的采集和并行处理,并对各通道传感器反馈信号进行实时管理、控制及目标结果数据处理;
S13)智能识别处理计算机(12)对所述伤损检测信号处理组件(10)输出的数据进行智能化识别处理,完成最终伤损数据的解算、处理及动态输出。


2.根据权利要求1所述的轨道综合检测与诊断方法,其特征在于,所述前端传感组件(20)包括速度编码器(6)、摄像传感装置(7)、漏磁传感装置(8)及超声传感装置(9);所述摄像传感装置(7)包括红外激光传感器(71)及线扫描相机(72),所述漏磁传感装置(8)包括激励线圈(81)、磁芯(82)及磁敏感阵列(83),所述超声传感装置(9)包括超声晶片(90);所述步骤S11)包括:
将所述速度编码器(6)安装于轮对(100)的联轴器上,轮对(100)的转动带动速度编码器(6)产生矩形脉冲信号,通过该脉冲信号计算行驶里程和当前车速;
将所述摄像传感装置(7)安装于钢轨(40)上方的车体(30)上,且与所述钢轨(40)保持设定距离;通过所述红外激光传感器(71)向钢轨外表面进行照射,然后采用线扫描相机(72)对钢轨外表面的图像进行拍摄;
将所述漏磁传感装置(8)安装于钢轨(40)上方的车体(30)上,所述激励线圈(81)缠绕在磁芯(82)上,所述磁敏感阵列(83)设置于磁芯(82)的下部,并与钢轨(40)保持设定距离;所述激励线圈(81)通电后,磁芯(82)产生感应磁场完成对钢轨(40)近表面的磁化,同时磁敏感阵列(83)完成对伤损漏磁信号的接收;所述漏磁传感装置(8)上还设置有提离值传感器,以确保所述漏磁传感装置(8)与钢轨(40)保持设定的安全距离;
将所述超声传感装置(9)安装于钢轨(40)上方的车体(30)上,高压脉冲信号作用于所述超声晶片(90)上,产生相应的超声信号入射之钢轨(40)的内部,同时所述超声晶片(90)通过逆压电效应接收伤损的回波信号。


3.根据权利要求2所述的轨道综合检测与诊断方法,其特征在于:所述伤损检测信号处理组件(10)包括实时控制器(1)、速度及里程处理单元(2)、图像信号处理单元(3)、漏磁信号处理单元(4)及超声信号处理单元(5);所述步骤S12)包括:
所述伤损检测信号处理组件(10)对前端传感组件(20)采集的信号进行高速数字信号处理,然后从中提取出目标结果数据,再发送至智能识别处理计算机(12);所述实时控制器(1)与速度及里程处理单元(2)、图像信号处理单元(3)、漏磁信号处理单元(4)及超声信号处理单元(5)之间采用并行高速数据总线通信;所述实时控制器(1)与智能识别处理计算机(12)之间通过高速以太网通信进行数据交互。


4.根据权利要求3所述的轨道综合检测与诊断方法,其特征在于,所述图像信号处理单元(3)包括图像左处理单元(31)及图像右处理单元(32),所述图像左处理单元(31)及图像右处理单元(32)均包括图像信号处理及控制模块(301)、相机控制模块(302)及图像信号接收模块(303);所述步骤S12)还包括:
所述图像信号处理及控制模块(301)实时接收来自于高速数据总线的图像触发信号,并将控制信号发送至相机控制模块(302);所述相机控制模块(302)直接与摄像传感装置(7)进行信号接口,并启动红外激光传感器(71)产生红外光源对钢轨(40)的外表面进行照射,同时线扫描相机(72)对钢轨(40)的轨面进行图像拍摄;图像画面数据通过网络通信发送至所述图像信号接收模块(303),然后再传送至图像信号处理及控制模块(301)进行相应的图像数字信号处理,最终处理完的图像数据结果通过高速数据总线传输至的实时控制器(1)。


5.根据权利要求3所述的轨道综合检测与诊断方法,其特征在于,所述漏磁信号处理单元(4)包括漏磁左处理单元(41)及漏磁右处理单元(42),所述漏磁左处理单元(41)及漏磁右处理单元(42)均包括漏磁信号处理及控制模块(401)、信号调理模块(402)、提离值计算模块(403)、激励控制模块(404)、霍尔传感器阵列信号采集模块(405)及提离传感器信号采集模块(406);所述步骤S12)还包括:
所述漏磁信号处理及控制模块(401)实时监测来自于高速数据总线的漏磁触发信号,当漏磁触发信号有效时,发送控制命令至激励控制模块(404),此时所述激励线圈(81)被施加激励电源,所述磁芯(82)产生磁化场,所述磁敏...

【专利技术属性】
技术研发人员:罗江平夏浪谭勇张东方曹经纬李红梁杨四清王文星赵明明
申请(专利权)人:株洲时代电子技术有限公司
类型:发明
国别省市:湖南;43

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1