一种地面颤振试验中滤波器引起相位畸变的消除方法技术

技术编号:26372055 阅读:22 留言:0更新日期:2020-11-19 23:40
本申请属于信号处理技术领域,特别涉及一种地面颤振试验中滤波器引起相位畸变的消除方法。方法包括:步骤一:构建气动力加载系统模型,确定试验件的激振点位置以及对应的拾振点位置,并在试验件的激振点位置安装激振器,在拾振点位置安装传感器;步骤二:将传感器测量得到第一激励力信号,输入到滤波器后得到滤波后的第二激励力信号,将第二激励力信号输入到气动力加载系统模型进行系统辨识;步骤三:构建控制器模型,并通过控制器模型对气动力加载系统模型的输出信号进行控制,使得在预置的频率点处,气动力加载系统模型的输出信号与目标信号一致。本申请能够消除滤波器的相位畸变,可有效消除高频噪声对气动力计算以及颤振测试的影响。

【技术实现步骤摘要】
一种地面颤振试验中滤波器引起相位畸变的消除方法
本申请属于信号处理
,特别涉及一种地面颤振试验中滤波器引起相位畸变的消除方法。
技术介绍
地面颤振试验中,由于气动力重构需要结构位移、速度以及加速度信号,实际信号中由于噪声水平较大信号信噪比较低,因此测量信号往往需要通过滤波器进行滤波处理。滤波器通常用于信号测试端,用于提高测试信号的质量和信噪比等,但是滤波器的使用虽然对信号的幅值影响不大,但是会明显引起信号的相位移动,参见附图1和附图2,在常规的振动测试和控制中,上述相位移动并不会造成结果的改变,但是对于地面颤振试验系统,响应信号采用滤波器后会使得气动力计算产生明显的相位滞后,引起颤振边界的明显变化。因此,希望有一种技术方案来克服或至少减轻现有技术的至少一个上述缺陷。
技术实现思路
本申请的目的是提供了一种地面颤振试验中滤波器引起相位畸变的消除方法,以解决现有技术存在的至少一个问题。本申请的技术方案是:一种地面颤振试验中滤波器引起相位畸变的消除方法,包括:步骤一:构建气动力加载系统模型,确定试验件的激振点位置以及对应的拾振点位置,并在试验件的激振点位置安装激振器,在拾振点位置安装传感器;步骤二:将所述传感器测量得到第一激励力信号,输入到滤波器后得到滤波后的第二激励力信号,将所述第二激励力信号输入到所述气动力加载系统模型进行系统辨识;步骤三:构建控制器模型,并通过所述控制器模型对所述气动力加载系统模型的输出信号进行控制,使得在预置的频率点处,所述气动力加载系统模型的输出信号与目标信号一致。可选地,步骤一中,所述构建气动力加载系统模型包括:对试验件进行颤振分析,并利用广义力等效的方式对激振点和拾振点位置进行优化配置,优化方法选择为遗传算法,获得最优的配置方案;基于获得的激振点和拾振点位置建立非定常气动力降阶模型;通过最小状态法对所述非定常气动力降阶模型进行有理函数拟合,形成气动力加载系统模型。可选地,步骤一中,所述传感器为振动传感器和力传感器中的一种。可选地,步骤三中,所述控制器模型采用响应反馈方式进行控制,通过响应信号反馈进入控制器,输入信号减去控制器输出信号生成最终的输入信号输入系统,从而实现对系统的控制。可选地,步骤三中,所述控制器模型为多点激励力控制器。可选地,还包括:步骤四:将相位畸变消除后的所述气动力加载系统模型的输出信号输入到地面颤振试验系统中进行测试。专利技术至少存在以下有益技术效果:本申请的地面颤振试验中滤波器引起相位畸变的消除方法,能够消除滤波器的相位畸变,由于采用滤波器,响应测试的信号信噪比较高,可有效消除高频噪声对气动力计算以及颤振测试的影响,同时由于整体相位偏移为零,因此对最终颤振结果没有影响。附图说明图1是现有技术中典型滤波器幅值响应示意图;图2是现有技术中典型滤波器相位偏移量示意图;图3是本申请的地面颤振试验中滤波器引起相位畸变的消除方法相位校正原理图;图4是本申请一个实施方式的滤波后激励力与气动力对比示意图;图5是本申请一个实施方式的气动力与激励力对比示意图。具体实施方式为使本申请实施的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行更加详细的描述。在附图中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。所描述的实施例是本申请一部分实施例,而不是全部的实施例。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。下面结合附图对本申请的实施例进行详细说明。在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制。下面结合附图3至图5对本申请做进一步详细说明。本申请提供了一种地面颤振试验中滤波器引起相位畸变的消除方法,包括:步骤一:构建气动力加载系统模型,确定试验件的激振点位置以及对应的拾振点位置,并在试验件的激振点位置安装激振器,在拾振点位置安装传感器;步骤二:将传感器测量得到第一激励力信号,输入到滤波器后得到滤波后的第二激励力信号,将所述第二激励力信号输入到气动力加载系统模型进行系统辨识;步骤三:构建控制器模型,并通过控制器模型对气动力加载系统模型的输出信号进行控制,使得在预置的频率点处,气动力加载系统模型的输出信号与目标信号一致。具体的,步骤一中,构建气动力加载系统模型包括:对试验件进行颤振分析,并利用广义力等效的方式对激振点和拾振点位置进行优化配置,优化方法选择为遗传算法,获得最优的配置方案;基于获得的激振点和拾振点位置建立非定常气动力降阶模型;通过最小状态法对非定常气动力降阶模型进行有理函数拟合,形成气动力加载系统模型。在本申请的一个实施方式中,步骤一中,传感器为振动传感器和力传感器中的一种。在本申请的一个实施方式中,步骤三中,控制器模型采用响应反馈方式进行控制,通过响应信号反馈进入控制器,输入信号减去控制器输出信号生成最终的输入信号输入系统,从而实现对系统的控制。本实施例中,控制器模型为多点激励力控制器。在本申请的一个实施方式中,还包括:步骤四:将相位畸变消除后的所述气动力加载系统模型的输出信号输入到地面颤振试验系统中进行测试。在地面颤振试验中,通过在响应测试端采用滤波器对信号进行滤波处理,并且为了保证各通道的信号相位延迟量相同,在每个通道使用相同的滤波器,使得基于滤波后结构响应计算气动力相对真实气动力产生相位滞后量,为频率的函数。为了对上述相位滞后量补偿,本申请的地面颤振试验中滤波器引起相位畸变的消除方法,在激励力控制过程中,气动力加载系统模型进行系统辨识采用的输出力信号也采用相同的滤波器进行滤波,这样建立的气动力加载系统模型的输出相对真实系统产生滞后量,然后利用控制算法对气动力加载系统模型输出进行控制,保证在设定频率点处,系统输出与目标信号一致,通过上述操作,使得控制后的气动力加载系统模型的输出与气动力一致,由于气动力加载系统模型的输出相对真实系统产生滞后量,因此真实激振器的输出超前气动力,整个系统的相位滞后量在设定频率点处为零,从而消除了滤波器因此的相位畸变影响。在本申请的一个具体实施方式中,包括:首先建立非定常气动力模型,并确定激振点和拾振点的位置,按照激振点的位置进行激振器的安装,并在拾振点位置安装力传感器。力传感器测试得到的第一激励力信号后,需要对第一本文档来自技高网...

【技术保护点】
1.一种地面颤振试验中滤波器引起相位畸变的消除方法,其特征在于,包括:/n步骤一:构建气动力加载系统模型,确定试验件的激振点位置以及对应的拾振点位置,并在试验件的激振点位置安装激振器,在拾振点位置安装传感器;/n步骤二:将所述传感器测量得到第一激励力信号,输入到滤波器后得到滤波后的第二激励力信号,将所述第二激励力信号输入到所述气动力加载系统模型进行系统辨识;/n步骤三:构建控制器模型,并通过所述控制器模型对所述气动力加载系统模型的输出信号进行控制,使得在预置的频率点处,所述气动力加载系统模型的输出信号与目标信号一致。/n

【技术特征摘要】
1.一种地面颤振试验中滤波器引起相位畸变的消除方法,其特征在于,包括:
步骤一:构建气动力加载系统模型,确定试验件的激振点位置以及对应的拾振点位置,并在试验件的激振点位置安装激振器,在拾振点位置安装传感器;
步骤二:将所述传感器测量得到第一激励力信号,输入到滤波器后得到滤波后的第二激励力信号,将所述第二激励力信号输入到所述气动力加载系统模型进行系统辨识;
步骤三:构建控制器模型,并通过所述控制器模型对所述气动力加载系统模型的输出信号进行控制,使得在预置的频率点处,所述气动力加载系统模型的输出信号与目标信号一致。


2.根据权利要求1所述的地面颤振试验中滤波器引起相位畸变的消除方法,其特征在于,步骤一中,所述构建气动力加载系统模型包括:
对试验件进行颤振分析,并利用广义力等效的方式对激振点和拾振点位置进行优化配置,优化方法选择为遗传算法,获得最优的配置方案;
基于获得的激振点和拾振点位置建立非定常气动力降...

【专利技术属性】
技术研发人员:宋巧治王亮聂凯刘凡张强
申请(专利权)人:中国飞机强度研究所
类型:发明
国别省市:陕西;61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1