位移检测器制造技术

技术编号:2514291 阅读:168 留言:0更新日期:2012-04-11 18:40
本实用新型专利技术揭示了一种位移检测器,包括:一标尺,其中具有一构件列,构件列包括以并列点接触布置并限制彼此的相对运动的规则形状构件,构件为可磁化材料制作;一传感器,传感器和标尺可沿平行于构件列及其接触线方向相对运动,传感器产生沿点接触线延伸方向的穿过构件的周期性变化磁场,并感应由所述相对运动在磁场中产生的相位移变化产生位移信号。本实用新型专利技术的技术方案,使用电磁场来取代光栅作为测量的基准,不会受到干扰,信号稳定。并且,本实用新型专利技术的位移检测器结构牢固,密封性高,具有很高的防护等级,可以在水下使用。同时,本实用新型专利技术的位移检测器可以具有任意的长度,且使用过程中的损耗也很小,可以长期使用。(*该技术在2015年保护过期,可自由使用*)

【技术实现步骤摘要】

本技术涉及测量设备,更具体地说,涉及一种测量两个可相对运动的部件之间的相对位移的位移检测器
技术介绍
在机械机床的领域中,需要使用测量设备来进行计数及数据测量,目前常用的测量设备是栅式测量系统。从上个世纪50年代到80年代栅式测量系统从感应同步器发展到光栅、磁栅。这3种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。它们有各自的优势。由于直线光栅测量系统的综合技术性能优于其他2种,而且制造费用又比感应同步器、磁栅低,因此直线光栅发展得最快,技术性能最高,市场占有率也最高,产业最大。目前直线光栅测量系统在栅式测量系统中的占有率已超过80%。计量光栅技术的基础是莫尔条纹(Moire fringes),1874年由英国物理学家L.Rayleigh首先提出这种图案的工程价值,直到20世纪50年代人们才开始利用光栅的莫尔条纹进行精密测量。德国Heidenhain首创DIADUR复制工艺,也就是在玻璃基板上蒸发镀铬的光刻复制工艺,这才能制造高精度、价廉的光栅刻度尺,光栅计量仪器才能为用户所接受,进入商品市场。后来英国Ferranti公司提出了一个4相信号系统,可以在一个莫尔条纹周期实现4倍频细分,并能鉴别移动方向,这就是4倍频鉴相技术,是光栅测量系统的基础,并一直广泛应用至今。目前常用的直线光栅根据形成莫尔条纹的原理不同分为几何光栅(幅值光栅)和衍射光栅(相位光栅),又可根据光路的不同分为透射光栅和反射光栅。光米级和亚微米级的光栅测量是采用几何光栅,光栅栅距为100nm至20nm远于光源光波波长,衍射现象可以忽略,当两块光栅相对移动时产生低频拍现象形成莫尔条纹,其测量原理称影像原理。纳米级的光栅测量是采用衍射光栅,光栅栅距是8nm或4nm,栅线的宽度与光的波长很接近,则产生衍射和干涉现象形成莫尔条纹,其测量原理称干涉原理。目前比较先进的直线光栅产品采用的测量原理主要有一下几种1.具有四场扫描的影像测量原理(透射法)采用垂直入射光学系统均为4相信号系统,是将指示光栅(扫描掩膜)开四个窗口分为4相,每相栅线依次错位四分之一栅距,在接收的4个光电元件上可得到理想的4相信号,这称为具有四场扫描的影像测量原理。2.有准单场扫描的影像测量原理(反射法)反射标尺光栅是采用40μm栅距的钢带,指示光栅(扫描掩膜)用二个相互交错并有不同衍射性能的相位光栅组成,这样一来,一个扫描场就可以产生相移为四分之一栅距的四个图象,称此原理为准单场扫描的影象测量原理。由于只用一个扫描场,标尺光栅局部的污染使光场强度的变化是均匀的,并对四个光电接收元件的影响是相同的,因此不会影响光栅信号的质量。与此同时,指示光栅和标尺光栅的间隙和间隙公差能大一些。3.单场扫描的干涉测量原理对于栅距很小的光栅,指示光栅是一个透明的相位光栅,标尺光栅是自身反射的相位光栅,光束是通过双光栅的衍射,在每一级的诸光束相互干涉,就形成了莫尔条纹,其中+1和-1级组干涉条纹是基波条纹,基波条纹变化的周期与光栅的栅距是同步对应的。光调制产生3个相位相差120°的测量信号,由3个光电元件接收,随后又转换成通用的相位差90°的正弦信号. 光栅测量系统存在如下的几个关键问题1.测量准确度(精度)的问题,光栅线位移传感器的测量准确度,首先取决于标尺光栅刻线划分度的质量和指示光栅扫描的质量(栅线边沿清晰至关重要),其次才是信号处理电路的质量和指示光栅沿标尺光栅导向的误差。影响光栅尺测量准确度的是在光栅整个测量长度上的位置偏差和光栅一个信号周期内的位置偏差。光栅尺的准确度(精度)用准确度等级表示,定义为在任意1m测量长度区段内建立在平均值基础上的位置偏差的最大值Fmax均落在±Δ(nm)之内,则±Δ为准确度等级。准确度等级划分为±0.1、±0.2、±0.5、±1、±2、±3、±5、±10和±15nm。由此可见光栅尺的准确度等级和测量长度无关,这是很高的一个要求,现在还没有见到其他生产厂家能够达到这一水平。现在玻璃透射光栅和金属反射光栅的栅距只采用20nm和40nm,对衍射光栅栅距采用4nm和8nm,(1nm光栅除外)光学二倍频后信号周期为2nm和4nm。2.信号的处理及栅距的细分,光栅的测量是将一个周期内的绝对式测量和周期外的增量式测量结合在一起,也就是说在栅距的一个周期内将栅距细分后进行绝对的测量,超过周期的量程则用连续的增量式测量。为了保证测量的精度,除了对光栅的刻划质量和运动精度有要求外,还必须对光栅的莫尔条纹信号的质量有要求,因为这影响电子细分的精度,也就是影响光栅测量信号的细分数(倍频数)和测量分辨力(测量步距)。栅距的细分数和准确性也影响光栅测量系统的准确度和测量步距。对莫尔条纹信号质量的要求主要是信号的正弦性和正交性要好;信号直流电平漂移要小。对读数头中的光电转换电路和后续的数字化插补电路要求频率特性好,才能保证测量速度大。3.光栅的参考标记和绝对座标。(1)光栅绝对位置的确立,光栅是增量测量,光栅尺的绝对位置是利用参考标记(零位)确定。参考标记信号的宽度和光栅一个栅距的信号周期一致,经后续电路处理后参考信号的脉冲宽度和系统一个测量步距一致。为了缩短回零位的距离,在测量全长内按距离编码的参考标记,每当经过两个参考标记后就可以确定光栅尺的绝对位置,例如栅距为4nm和20nm的光栅尺扫描单元相对于标尺移动20mm后就可确定绝对位置,栅距为40nm的光栅尺要移动80mm才能确定绝对位置。(2)绝对坐标传感器,为了在任何时刻测量到绝对位置,它是用七个增量码道得到绝对位置,每个码道是不同的,刻线最细码道的栅距有两种,一种是16nm,另一种是20nm,其分辨力都可为0.1nm,准确度±3nm。测量长度可达3m,最大速度120m/min。它所采用的是光电扫描原理和常用的透射光栅一样,是具有四场扫描的影像测量原理。由于现在常用的直线光栅测量系统存在上述的问题,在本领域中就需要一种新的测量技术和设备,能够克服直线光栅测量系统存在的问题。
技术实现思路
本技术的目的是提供一种新的测量设备,其采用电磁场变换的原理来进行测量,可以克服光栅测量系统存在的问题。根据本技术,提供一种位移检测器,包括一标尺,其中具有一构件列,所述构件列包括以并列点接触布置并限制彼此的相对运动的构件列,构件为可磁化材料制作;一传感器,所述传感器和所述标尺可沿平行于构件列及其接触线方向相对运动,所述传感器产生沿点接触线延伸方向的穿过构件的周期性变化磁场,并感应由所述相对运动在磁场中产生的相位移变化产生位移信号。根据本技术的一实施例,所述标尺为中空的金属圆柱体,所述构件列放置于所述金属圆柱体的空腔中。且所述构件为球形,且为钢制球。根据本技术的一实施例,所述传感器包括磁场产生装置,产生沿点接触线延伸方向的穿过球的周期性变化磁场;位移检测装置,感应由所述相对运动在磁场中产生的相位移变化产生表示所述标尺和所述传感器的相对位移的信号。所述磁场产生装置可包括至少一个第一线圈。所述第一线圈与球列同轴。所述位移检测装置包括至少一个第二线圈。所述第二线圈与所述第一线圈同轴。所述磁场产生装置也可包括至少一个第三线圈,每本文档来自技高网
...

【技术保护点】
一种位移检测器,其特征在于,包括:    一标尺,其中具有一构件列,所述构件列包括以并列点接触布置并限制彼此的相对运动的规则形状构件,所述构件为可磁化材料制作;    一传感器,所述传感器和所述标尺可沿平行于构件列及其接触线方向相对运动,所述传感器产生沿点接触线延伸方向的穿过构件的周期性变化磁场,并感应由所述相对运动在磁场中产生的相位移变化产生位移信号。

【技术特征摘要】

【专利技术属性】
技术研发人员:张磊
申请(专利权)人:上海雷尼威尔自动化技术有限公司
类型:实用新型
国别省市:31[中国|上海]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1