当前位置: 首页 > 专利查询>浙江大学专利>正文

一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器及其制作方法技术

技术编号:24993986 阅读:56 留言:0更新日期:2020-07-24 17:56
本发明专利技术公开了一种利用双光子飞秒激光直写技术3D打印的F‑P磁场传感器,其特征在于包含单模光纤、毛细管和F‑P腔微结构;所述F‑P腔微结构与所述单模光纤的一端由3D打印直接打印连接,F‑P腔微结构的外围套设有毛细管,毛细管的两端密封形成密封腔体,密封腔体内充满磁流体;所述单模光纤的另一端通过光纤耦合器分别连接宽谱光源和光谱分析仪;其原理与传统的内部填充磁流体的光纤磁场传感器不同,通过在波导周围填充磁流体所产生的倏逝耦合效应,突破了磁流体高吸收性对传感器磁场灵敏度的限制,具有较高的磁场灵敏度;打印制备的F‑P磁场传感器仅为微米尺寸,封装后的传感头在毫米量级,具有小型化的优点。

【技术实现步骤摘要】
一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器及其制作方法
本专利技术涉及光学传感
,具体涉及一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器及其制作方法。
技术介绍
科学研究与工业应用的重大需求,促使磁场测量技术飞速发展。当前已经提出了用于检测磁场的各种类型的基于光学和电学的磁场传感器,其中基于磁流体(Magneticfluid,MF)的光纤磁场传感器是一种有潜力的磁场传感器,这种传感器使用磁流体作为敏感物质,磁流体由包裹表面活性剂(油酸)的磁性纳米颗粒(如Fe3O4,CoFe2O4或MnFe2O4等)悬浮分散在某些溶剂中混合而成。磁流体具有折射率可调、倏逝场传输依赖性、法拉第效应和双折射效应等磁光特性,可利用光学方法实现对外界磁场的精密检测。MF用于磁场感应的基本原理是MF的折射率随周围磁场的增加而增加。基于这一原理,已经提出并设计了各种内部填充有MF的基于光纤的磁场传感器,包括基于Fabry-Perot干涉仪(FPI)和Mach-Zehnder干涉仪(MZI)的腔内传感方案。但是由于MF的高吸收性,传感长度和MF浓度之间存在矛盾,即传感长度随MF浓度的增加而缩短,因此限制了传感器灵敏度的提高。MF的存在可以改变导模或倏逝场的特性,从而导致光程差的改变,这一原理可以应用于多种传感结构中,如Mach-Zehnder、Sagnac干涉仪、多模干涉仪、长周期光纤光栅等。基于单模光纤(SMF)中多模干涉的磁场传感器难以实现高灵敏度,增加干涉长度可以提高对磁场的灵敏度,但是磁传感器的尺寸会增加,而在实际应用中,小型化是高灵敏度磁场传感器和设备开发中的关键问题,要求既要保证磁场传感器的灵敏度,又要兼备传感器的小型化特点。虽然现有技术中存在一些带有可填充MF气孔的小型化光子晶体光纤传感器,但这些结构在制备工艺上存在难点,稳定性较差,且在测量过程中的光信号直接通过填充有MF的空腔传输,光信号损耗较高。若要使得磁场传感器兼备高灵敏度、高稳定性、小型化、低损耗的优点,则需要同时考虑制作工艺和传感器结构的设计,具有较大的挑战性。
技术实现思路
为了解决现有技术中的磁场传感器灵敏度、稳定性较低,以及光信号损耗较大的缺陷,本专利技术提出了一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器及其制作方法,采用双光子激光直写技术3D打印制造的器件具有高分辨率和快速写入速度的优势,能够解决小型化磁场传感器由于制作工艺导致的稳定性差的问题。本专利技术设计了一种新的F-P腔微结构且被磁流体包覆,使得光信号在传输过程中沿着F-P腔微结构中的波导传输,避免了光信号直接通过填充有磁流体的空腔传输导致的光信号损耗较高的问题,本专利技术制作的F-P磁场传感器具备了较高的灵敏度。为了实现上述目的,本专利技术采用如下技术方案:一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器,其特征在于包含单模光纤、毛细管和F-P腔微结构;所述F-P腔微结构与所述单模光纤的一端由3D打印直接打印连接,F-P腔微结构的外围套设有毛细管,毛细管的两端密封形成密封腔体,密封腔体内充满磁流体;所述单模光纤的另一端通过光纤耦合器分别连接宽谱光源和光谱分析仪;所述的F-P腔微结构包括波导、第一平面、第二平面和支撑结构;所述的波导与单模光纤的纤芯对齐,第一平面和第二平面分别与波导的两端垂直连接,且第一平面与单模光纤的一端相接触;波导的外围设有连接第一平面和第二平面的支撑结构。作为本专利技术的优选,所述毛细管的两端使用紫外固化胶固定和密封。作为本专利技术的优选,所述毛细管的直径大于单模光纤的直径。作为本专利技术的优选,所述第一平面、第二平面的直径与单模光纤的直径相同。作为本专利技术的优选,所述的第一平面为单模光纤与F-P腔微结构的界面,其两侧存在折射率差;所述的第二平面上与波导相连的一侧镀有全反膜。作为本专利技术的优选,所述的波导由锥形体和圆柱体构成,锥形体的小端面与圆柱体的一个端面匹配连接,锥形体的大端面与单模光纤的纤芯直径相同。作为本专利技术的优选,所述圆柱体的直径范围为0.5μm-10μm。本专利技术还公开了一种上述的利用双光子飞秒激光直写技术3D打印的F-P磁场传感器的制作方法,包含如下步骤:1)将单模光纤的一个端面进行切割,并将切割面固定在基板的一侧;2)利用双光子飞秒激光直写仪直接将所述的F-P腔微结构3D打印在单模光纤的切割面上,在打印过程中,波导由锥形体和圆柱体构成,锥形体的小端面直径与圆柱体直径相同,锥形体的大端面与单模光纤的纤芯直径相同,第一平面、第二平面的直径与单模光纤的直径相同;3)所述的F-P腔微结构打印完成后,将毛细管套设在F-P腔微结构的外围,毛细管的一端通过紫外固化胶密封在单模光纤的一端;将吸入磁流体的注射器连通未密封的毛细管的另一端,待磁流体灌装完毕后,将毛细管的另一端密封,形成包围F-P腔微结构的密封腔体;F-P磁场传感器制作完成。作为本专利技术的优选,在3D打印过程中,打印材料采用聚合物流体材料。本专利技术的有益效果在于:本专利技术提出了一种利用双光子飞秒激光直写技术3D打印的高灵敏度磁场传感器,其原理与传统的内部填充磁流体的光纤磁场传感器不同,通过在波导周围填充磁流体所产生的倏逝耦合效应,突破了磁流体高吸收性对传感器磁场灵敏度的限制,从而具有较高的磁场灵敏度;此外,该传感器采用双光子飞秒激光直写技术3D打印的工艺,解决了制作困难、稳定性差的问题,从而具有稳定性高、易于加工的优点;最后,该F-P磁场传感器中的F-P腔微结构直接打印于单模光纤端面,波导仅为微米尺寸,封装后的传感头在毫米量级,具有小型化的优点。附图说明图1是本专利技术中利用双光子飞秒激光直写技术3D打印的F-P磁场传感器在工作过程中的原理示意图;图2是本专利技术中利用双光子飞秒激光直写技术3D打印的F-P磁场传感器的结构示意图;图3为本专利技术的部分实验测试光谱图;图4为本专利技术的实验测试结果图;图中:1.宽谱光源,2.光纤耦合器,3.F-P磁场传感器,4.光谱分析仪,3-1.单模光纤,3-2.第一平面,3-3.波导,3-4.第二平面,3-5.毛细管,3-6.支撑结构。具体实施方式下面结合附图和实例对本专利技术作进一步说明。本专利技术中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。如图2所示,一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器,包含单模光纤3-1、毛细管3-5和F-P腔微结构;所述F-P腔微结构与所述单模光纤3-1的一端由3D打印直接打印连接,F-P腔微结构的外围套设有毛细管3-5,毛细管3-5的两端密封形成密封腔体,密封腔体内充满磁流体;所述的F-P磁场传感器在工作时,如图1所示,所述单模光纤3-1的另一端通过光纤耦合器2分别连接宽谱光源1和光谱分析仪4。所述的F-P腔微结构包含单模光纤3-1第一平面3-2、波导3-3、第二平面3-4毛细管3-5以及支撑结构3-6,其本文档来自技高网
...

【技术保护点】
1.一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器,其特征在于包含单模光纤(3-1)、毛细管(3-5)和F-P腔微结构;所述F-P腔微结构与所述单模光纤(3-1)的一端由3D打印直接打印连接,F-P腔微结构的外围套设有毛细管(3-5),毛细管(3-5)的两端密封形成密封腔体,密封腔体内充满磁流体;所述单模光纤(3-1)的另一端通过光纤耦合器(2)分别连接宽谱光源(1)和光谱分析仪(4);/n所述的F-P腔微结构包括波导(3-3)、第一平面(3-2)、第二平面(3-4)和支撑结构;所述的波导(3-3)与单模光纤(3-1)的纤芯对齐,第一平面(3-2)和第二平面(3-4)分别与波导(3-3)的两端垂直连接,且第一平面(3-2)与单模光纤(3-1)的一端相接触;波导(3-3)的外围设有连接第一平面(3-2)和第二平面(3-4)的支撑结构。/n

【技术特征摘要】
1.一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器,其特征在于包含单模光纤(3-1)、毛细管(3-5)和F-P腔微结构;所述F-P腔微结构与所述单模光纤(3-1)的一端由3D打印直接打印连接,F-P腔微结构的外围套设有毛细管(3-5),毛细管(3-5)的两端密封形成密封腔体,密封腔体内充满磁流体;所述单模光纤(3-1)的另一端通过光纤耦合器(2)分别连接宽谱光源(1)和光谱分析仪(4);
所述的F-P腔微结构包括波导(3-3)、第一平面(3-2)、第二平面(3-4)和支撑结构;所述的波导(3-3)与单模光纤(3-1)的纤芯对齐,第一平面(3-2)和第二平面(3-4)分别与波导(3-3)的两端垂直连接,且第一平面(3-2)与单模光纤(3-1)的一端相接触;波导(3-3)的外围设有连接第一平面(3-2)和第二平面(3-4)的支撑结构。


2.如权利要求1所述的一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器,其特征在于,所述毛细管(3-5)的两端使用紫外固化胶固定和密封。


3.如权利要求2所述的一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器,其特征在于,所述毛细管(3-5)的直径大于单模光纤(3-1)的直径。


4.如权利要求1所述的一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器,其特征在于,所述第一平面(3-2)、第二平面(3-4)的直径与单模光纤(3-1)的直径相同。


5.如权利要求1所述的一种利用双光子飞秒激光直写技术3D打印的F-P磁场传感器,其特征在于,所述的第二平面(3-4)上与波导...

【专利技术属性】
技术研发人员:张登伟梁璀魏鹤鸣
申请(专利权)人:浙江大学上海大学
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1