当前位置: 首页 > 专利查询>清华大学专利>正文

基于深度学习的无线通信物理层收发端的联合优化方法技术

技术编号:24616138 阅读:113 留言:0更新日期:2020-06-24 02:35
本发明专利技术公开了一种基于深度学习的无线通信物理层收发端的联合优化方法,包括:随机生成独立同分布的比特序列;设计卷积自编码器,用于时域传输,同时完成调制、均衡和解调的功能,网络的软输出可以成为任意软解码器的输入,设计局部连接层替代上述卷积层,用于频域均衡,以对输入序列产生不同的衰落影响;实现基于深度学习的神经网络架构,用于联合优化无线通信物理层的发射端和接收端,根据通信需求完成各类信道的映射机制设计;在OFDM传输系统中测试上述网络结构,在后续引入LDPC编码方法,实现系统进一步优化。该方法就时间复杂度和衰落信道下的误比特率而言,具备良好的鲁棒性和适应性,可以和其他的编码方案相结合,进一步提升性能。

A joint optimization method of physical layer transceiver based on deep learning

【技术实现步骤摘要】
基于深度学习的无线通信物理层收发端的联合优化方法
本专利技术涉及通信
,特别涉及一种基于深度学习的无线通信物理层收发端的联合优化方法。
技术介绍
无线通信技术中的一个重要问题在于,从发射端到接收端有多少信息得到了可靠传输。在物理层OSI模型(OpenSystemInterconnectionReferenceModel,开放式系统互联参考模型)的研究中,整个系统从分治法的角度进行优化,发射端通常包含信源编码,信道编码和调制单元,接收端则涵盖同步,信道解码和信源解码等功能。针对不同的信道环境和应用需求,大量优化研究针对各模块独立进行,而根据信息论中的数据处理理论,通信中子模块的局部优化不能保证整个系统的全局最优。DL(DeepLearning,深度学习)是一类模式识别方法的统称,通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。得益于其强大的泛化能力,DL在CV(ComputerVision,计算机视觉)和NLP(NaturalLanguageProcessing,自然语言处理)中取得了广泛而成功的应本文档来自技高网...

【技术保护点】
1.一种基于深度学习的无线通信物理层收发端的联合优化方法,其特征在于,包括以下步骤:/nS1,根据神经网络模型的参数规模生成多个独立同分布的比特序列;/nS2,在所述神经网络模型中设计用于时域传输的卷积自编码器单元,根据所述多个独立同分布的比特序列对所述神经网络模型进行训练,完成调制、均衡和解调的功能,使得所述神经网络模型的输入为任意长度的比特序列;/nS3,根据多径衰落信道的能量重分布需求,将所述卷积自编码器单元的卷积层用局部连接层替代用于频域均衡,以产生对输入序列局部不同的衰落影响;/nS4,根据预设通信需求完成各类信道的映射机制设计,并确定所述神经网络模型的神经网络结构,以联合优化无线通...

【技术特征摘要】
1.一种基于深度学习的无线通信物理层收发端的联合优化方法,其特征在于,包括以下步骤:
S1,根据神经网络模型的参数规模生成多个独立同分布的比特序列;
S2,在所述神经网络模型中设计用于时域传输的卷积自编码器单元,根据所述多个独立同分布的比特序列对所述神经网络模型进行训练,完成调制、均衡和解调的功能,使得所述神经网络模型的输入为任意长度的比特序列;
S3,根据多径衰落信道的能量重分布需求,将所述卷积自编码器单元的卷积层用局部连接层替代用于频域均衡,以产生对输入序列局部不同的衰落影响;
S4,根据预设通信需求完成各类信道的映射机制设计,并确定所述神经网络模型的神经网络结构,以联合优化无线通信物理层的发射端和接收端;
S5,将所述神经网络模型应用于通信系统进行测试,并将所述神经网络模型的输出比特序列的损失反向传播,通过梯度下降方法进行优化和迭代收敛以获得最佳系统模型;
S6,对所述神经网络模型引入LDPC编码,所述神经网络模型的输出作为LDPC的输入。


2.根据权利要求1所述的基于深度学习的无线通信物理层收发端的联合优化方法,其特征在于,在步骤S2中,对所述神经网络模型进行训练为通过选择符合预设通信需求的信道,确定达到预设迭代次数后,达到预设误比特率。


3.根据权利要求1所述的基于深度学习的无线通信物理层收发端的联合优化方法,其特征在于,所述S2中训练完的神经网络进一步包括:
发射端将输入比特流映射为一个串行复向量,经由时域传输,其中,第一层为卷积层,其后为卷积层和全连接层;
信道层将所述串行复向量归一化以满足功率限制,归一化的符号用于同信道矩阵进行操作;
接收端将经由信道层变形和噪声污染后的符号序列均衡和解映射,其中,接收端的网络结构同发射端对称,以恢复原始的比特流信息。


4.根据权利要求1所述的基于深度学习的无线通信物理层收发端的联合优化方法,其特征在于,将所述卷积自编码器单元的卷积层用局部连接层替代后,卷积核的参数不再进行共享,以使输入比特序列产生...

【专利技术属性】
技术研发人员:王劲涛张玥潘长勇宋健
申请(专利权)人:清华大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1