由磁性蓄冷材料颗粒体构成的超低温用蓄冷材料,当由评价机械强度有模具等施加5MPa的压力时,构成磁性蓄冷材料颗粒体的磁性蓄冷材料颗粒中遭破坏的颗粒的比率为重量的1%以下。而且,磁性蓄冷材料颗粒体中,形状因子R大于1.5的磁性蓄冷材料颗粒的比率为5%以下,该形状因子R=L↑[2]/4πA,其中L为单个磁性蓄冷材料颗粒的投影图像的周长,A为投影图像的实际面积。这种超低温用蓄冷材料对于机械振动等具有优异的机械特性,并且该机械特性具有良好的再现性。超低温用蓄冷器是将由上述磁性蓄冷材料颗粒体构成的超低温用蓄冷材料填充于蓄冷容器内而构成的。这种超低温用蓄冷器能够长期发挥优异的冷冻性能。(*该技术在2015年保护过期,可自由使用*)
【技术实现步骤摘要】
本专利技术涉及用于冷冻机等的超低温用蓄冷材料及采用该蓄冷材料的超低温用蓄冷器。
技术介绍
近年来,超导技术的发展很快,随着其应用领域的扩大,小型且高性能冷冻机的开发势在必行。对这种冷冻机的要求是重量轻、体积小且热效率高。例如,超导MRI装置和低温泵等中,使用着基佛德·麦克马洪式(GM式)和斯特林式等以冷冻循环制冷的冷冻机。此外,磁悬浮列车上也必须使用高性能的冷冻机。这种冷冻机中,压缩的He气等工作介质在填充有蓄冷材料的蓄冷器内单向流动,将其热能供给蓄冷材料,在此处膨胀的工作介质反向流动,从蓄冷材料接受热能。在这一过程中,不仅换热效应良好,而且工作介质的循环热效率得以提高,可获得更低的温度。上述冷冻机中使用的蓄冷材料,过去主要采用Cu和Pb等。但是,这类蓄冷材料在20K以下的超低温中比热显著减小,因此,上述换热效应不能充分得以发挥,难以实现超低温。为此,为实现更接近绝对零度的温度,最近正在研究采用在超低温领域有较大比热的Er3Ni、ErNi、ErNi2等Er-Ni系金属互化物(参照特开平1-310269号公报和ErRh等ARh系金属互化物(ASm、Gd、Tb、Dy、Ho、Er、Tm、Yb)(参照特开昭51-52378号公报)等磁性蓄冷材料。然而,上述蓄冷器处于工作状态时,He气等工作介质以高压、高速、并频繁改变其流向地通过填充于蓄冷器内的蓄冷材料之间的空隙。因此,蓄冷材料受到以机械振动为首的各种力的作用。此外,将蓄冷材料填充于蓄冷器内时也要施加压力。这样,蓄冷材料受到各种力的作用,对此,上述Er3Ni和ErRh等金属互化物构成的磁性蓄冷材料由于其材质一般较脆弱,故存在由于上述运行中的机械振动和填充时的压力等原因而容易微粉化的问题。所产生的微粉将破坏气封,对蓄冷器的性能造成不良影响。再有,采用由上述金属互化物构成的磁性蓄冷材料的蓄冷器,还存在着其性能降低的程度因磁性蓄冷材料的制造批次等而非常参差不一的问题。本专利技术的目的是,提供对于机械振动和填充压力等再现性良好地显示优异的机械特性的超低温用蓄冷材料,以及通过采用这种蓄冷材料而能够长期再现性良好地发挥优异的冷冻性能的超低温用蓄冷器、进而提供采用这种超低温用蓄冷器的冷冻机。专利技术的公开本专利技术人为实现上述目的而进行各种研究后发现,由含有稀土类元素的金属互化物等所构成的磁性蓄冷材料颗粒的机械强度,与存在于晶界上的稀土类碳化物和稀土类氧化物的析出量和析出状态,甚至形状等存在着很强的依存关系。因为这些稀土类碳化物和稀土类氧化物的析出量和析出状态等,与作为杂质的碳和氧的量、急速冷却凝固过程中的包围气体、急冷速度和熔融金属温度等存在着复杂的关系,因此随着磁性蓄冷材料颗粒的制造批次而变化。由此可知,每一制造批次的磁性蓄冷材料颗粒,其机械强度非常参差不一,单从制造条件等来预测机械强度是极为困难的。为此,为了实现提高磁性蓄冷材料颗粒的机械可靠性,对磁性蓄冷材料颗粒的机械特性作了各种研究,结果发现当向磁性蓄冷材料颗粒的集群施加力时,单个磁性蓄冷材料颗粒上将产生极其复杂的应力集中,因此,将着眼点放在作为磁性蓄冷材料颗粒的集群的机械强度上比着眼于单个磁性蓄冷材料颗粒的机械强度更能掌握磁性蓄冷材料颗粒的机械可靠性。此外,关于磁性蓄冷材料颗粒的形状,我们发现;通过有选择地使用具有突起物少的形状的磁性蓄冷材料颗粒,能够提高磁性蓄冷材料颗粒的机械可靠性。本专利技术即是基于这些认识而形成的。即,本专利技术的第1超低温用蓄冷材料是具有磁性蓄冷材料颗粒体的超低温用蓄冷材料,其特征是构成上述磁性蓄冷材料颗粒体的磁性蓄冷材料颗粒中,当向上述磁性蓄冷材料颗粒体施加5MPa的压力而遭破坏的上述磁性蓄冷材料颗粒的比率为重量的1%以下。本专利技术的第1超低温用蓄冷器的特征是具有蓄冷容器和被填充在上述蓄冷容器内的、上边所述的本专利技术之第1超低温用蓄冷材料。而本专利技术的第2超低温用蓄冷材料是具有磁性蓄冷材料颗粒体的超低温用蓄冷材料,其特征是上述磁性蓄冷材料颗粒体中,以L2/4πA表达的形状因子R大于1.5的上述磁性蓄冷材料颗粒的比率为5%以下,其中L为单个磁性蓄冷材料颗粒的投影图像的周长,A为上述投影图像的实际面积。本专利技术的第2超低温用蓄冷器的特征是具有蓄冷容器和填充于上述蓄冷容器内的、上边所述的本专利技术之第2超低温用蓄冷材料。进而,本专利技术的冷冻机的特征是具有上述本专利技术之第1超低温用蓄冷器或第2超低温用蓄冷器。本专利技术的超低温用蓄冷材料是由磁性蓄冷材料颗粒体,即磁性蓄冷材料颗粒的集合体(集群)所构成。作为本专利技术中使用的磁性蓄冷材料,可列举出例如以RMz、(R为从Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm和Yb中选择的至少一种稀土类元素,M为从Ni、Co、Cu、Ag、Al和Ru中选择的至少一种金属元素,z为0.001~9.0范围的数)表示的含有稀土类元素的金属互化物,和以ARh(A为从Sm、Gd、Tb、Dv、Ho、Er、Tm和Yb中选择的至少一种稀土类元素)表示的含有稀土类元素的金属互化物。上边所述的磁性蓄冷材料颗粒,其形状越接近球状且其颗粒直径越一致,气体的流动就越顺畅。为此,使磁性蓄冷材料颗粒体(全部颗粒)的重量的70%以上,由长径对短径之比(纵横尺寸比)为5以下的磁性蓄冷材料颗粒构成,而且使磁性蓄冷材料颗粒体的重量的70%以上由颗粒直径为0.01~3.0mm范围的磁性蓄冷材料颗粒构成为宜。当磁性蓄冷材料颗粒的纵横尺寸比大于5时,填充后形成的空隙难以均匀。因此,这种颗粒若超过磁性蓄冷材料颗粒体的重量的30%,则有导致蓄冷性能降低等的可能。更适宜的纵横尺寸比为3以下,再适宜的为2以下。此外,纵横尺寸比为5以下的颗粒在磁性蓄冷材料颗粒体中的比率,达到重量的80%以上则更为适宜,再适宜的为重量的90%以上。另外,若磁性蓄冷材料颗粒的颗粒直径不足0.01mm,则填充密度过大,使氦等工作介质的压力损失增大的可能性加大。而颗粒直径若超过3.0mm,则磁性蓄冷材料颗粒与工作介质之间的传热面积减小,使热传递效率降低。因此,这类颗粒若超过磁性蓄冷材料颗粒体的重量的30%,有导致蓄冷性能降低等的可能。更适宜的颗粒直径为0.05~2.0mm的范围,再适宜的为0.1~0.5mm范围。颗粒直径为0.01~3.0mm范围的颗粒在磁性蓄冷材料颗粒体中的比率,以重量的80%以上更为适宜,再适宜的为重量的90%以上。本专利技术的超低温用蓄冷材料是由当向具有上边所述形状的磁性蓄冷材料颗粒的集群施加5MPa的压力时遭破坏的颗粒的比率为重量的1%以下的磁性蓄冷材料颗粒体所构成。如前所述,本专利技术基于下述认识,即单个超低温用蓄冷材料颗粒的机械强度与作为杂质的碳和氧的量、急冷凝固过程中的包围气体、急冷速度、熔融金属温度等因素有复杂的关系,而且在作为集群的场合将着眼点放在作为这种产生复杂的应力集中的磁性蓄冷材料颗粒的集群的机械强度上。通过测定向这种磁性蓄冷材料颗粒的集群,即磁性蓄冷材料颗粒体施加5MPa的压力时遭破坏的颗粒的比率,便能够对磁性蓄冷材料颗粒体的机械强度的可靠性作出评价。即,若向磁性蓄冷材料颗粒体施加5MPa的压力时遭破坏的颗粒的比率为重量的1%以下,则即使磁性蓄冷材料颗粒体的制造批次不同、甚至制造条件等不同,磁性蓄冷本文档来自技高网...
【技术保护点】
一种具有磁性蓄冷材料颗粒体的超低温用蓄冷材料,构成上述磁性蓄冷材料颗粒体的磁性蓄冷材料颗粒中,向上述磁性蓄冷材料颗粒体施加5MPa的压力时遭破坏的上述磁性蓄冷材料颗粒的比率为重量的1%以下。
【技术特征摘要】
...
【专利技术属性】
技术研发人员:冈村正巳,蘓理尚行,
申请(专利权)人:株式会社东芝,
类型:发明
国别省市:JP[日本]
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。