用于喷射器循环系统的喷射器技术方案

技术编号:2455154 阅读:165 留言:0更新日期:2012-04-11 18:40
一种用于喷射气循环系统的喷射器(400),喷嘴具有第一制冷剂通道(411),第二制冷剂通道(412),及第三制冷剂通道(413),以此顺序沿从所述喷嘴的制冷剂入口向制冷剂出口的制冷剂流方向布置。第一制冷剂通道,第二制冷剂通道和第三制冷剂通道分别形成为圆柱形,其每一个都具有恒定的通道直径。再者,喷嘴的压力增加部分(420)同样形成为具有恒定通道直径的圆柱形。由此,喷射器能够容易地以低成本制造喷射器。(*该技术在2022年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及一种用于喷射器循环系统的喷射器,该喷射器由从喷嘴喷射的高速制冷剂流吸入气态制冷剂。另一方面,为了防止喷嘴40中的制冷剂流的较大的扰动,锥形部分41的锥角设置为相对较小的角度。因此,喷嘴40的轴向尺寸变得较长。本专利技术的第二个目的是提供一种用于喷射器循环系统的喷射器,该喷射器具有减小的轴向尺寸。依照本专利技术的第一个方面,一种用于喷射气循环系统的喷射器,包括喷嘴,所述喷嘴用于通过将高压制冷剂的压力能转换成速度能使从散热器流出的高压制冷剂减压,及混合部分,在蒸发器中蒸发的气态制冷剂通过从所述喷嘴喷射的制冷剂流被吸入所述混合部分中,以便与从所述喷嘴喷射的制冷剂混合。在所述喷射器中,所述喷嘴具有第一制冷剂通道,第二制冷剂通道,及第三制冷剂通道,以此顺序沿从所述喷嘴的制冷剂入口向制冷剂出口的制冷剂流方向布置。再者,所述第一制冷剂通道,第二制冷剂通道和第三制冷剂通道分别具有圆柱形,其每一个都具有恒定的通道直径,及所述第一制冷剂通道的通道直径大于所述第二制冷剂通道的通道直径。由此,能够容易地通过诸如钻孔的简单切削方法制造所述第一制冷剂通道,第二制冷剂通道和第三制冷剂通道。由此,能够降低喷射器的制造成本。在本专利技术中,可以使所述第二制冷剂通道的通道直径小于所述第三制冷剂通道的通道直径。作为选择,可以使所述第二制冷剂通道的通道直径等于所述第三制冷剂通道的通道直径。作为选择,所述第二制冷剂通道的通道直径可以大于所述第三制冷剂通道的通道直径。优选方式是,所述混合部分具有圆柱形通道,所述圆柱形通道具有恒定的通道直径。在此种情况下,能够容易地通过诸如钻孔的简单切削方法制造所述混合部分。根据本专利技术的第二个方面,在一种用于喷射气循环系统的喷射器中,喷嘴包括锥形部分,在所述锥形部分中其通道截面面积向下游制冷剂侧被减小以便具有其通道截面面积变成最小的节流部分,及连接到在制冷剂下游侧的所述节流部分上的出口通道部分;再者,锥形部分具有在制冷剂入口侧的锥角,所述锥角大于在节流部分的一侧的锥角。由此,能够迅速地增加制冷剂流速,并且能够相对地减小喷嘴的轴向尺寸。由此,能够有效地减小喷射器的轴向尺寸。在这种情况下,锥形部分的锥角可以分段变化,并且所述喷嘴的出口通道部分可以形成为圆柱形,所述圆柱形具有恒定的通道直径。附图说明图1是表示根据本专利技术第一个实施例的喷射器循环系统的示意图;图2是表示用于根据第一个实施例的喷射器循环系统的喷射器的放大示意图;图3是根据第一个实施例的特征图,图中示出了从喷嘴的制冷剂出口到喷射器混合部分的制冷剂出口的制冷剂相对流速,和从喷射器的制冷剂通道部分中的中心沿径向方向的径向位置之间的关系;图4是表示根据第一个实施例的喷射器循环系统操作的莫利尔线图(p-h图);图5是表示用于根据本专利技术的第二个实施例的喷射器循环系统的喷射器的喷嘴的剖视图;图6是表示在比较喷嘴中的制冷剂速度的变化图;图7是说明在根据第二个实施例的喷射器中的喷嘴的效果的视图;图8是表示根据第二个实施例的修改的喷射器的喷嘴的剖视图;及图9是表示现有技术中的喷射器的剖视图。在图1中,压缩机100由诸如车辆发动机(未示出)的驱动源驱动,以便吸入和压缩制冷剂。在散热器200中(即,高压侧热交换器),从压缩机100排出的制冷剂与客室外面的空气(外面的空气)进行热交换,被冷却。在蒸发器300中(即,低压侧热交换器),在喷射器循环系统中的液态制冷剂与吹入客室的空气进行热交换,以便通过蒸发器300的空气被冷却。喷射器400使从散热气200流出的高压制冷剂减压和膨胀以便将在蒸发器300中蒸发的气态制冷剂吸入其中,并且将膨胀能(expansion energy)转换成压力能,以便增加吸入压缩机100中的制冷剂的压力。从喷射器400过来的制冷剂流入气体-液体分离器500中,并且在气体-液体分离器500中被分离为气态制冷剂和液态制冷剂。在气体-液体分离器500中被分离的气态制冷剂被吸入压缩机100,而在气体-液体分离器500中被分离的液态制冷剂被吸入蒸发器300的一侧。气体-液体分离器500通过制冷剂通道连接到蒸发器300上。在气体-液体分离器500和蒸发器300之间的制冷剂通道中,可以提供诸如毛细管,固定节流阀和可变节流阀的流量控制阀。再者,喷射器400的结构详细描述如下。如图2所示,喷射器400包括喷嘴410和混合部分420。喷嘴410通过将制冷剂的压力能(压头)转换成其速度能(速度头(speed head))使从散热器200流过来的高压制冷剂减压和膨胀。在蒸发器300中蒸发的气态制冷剂由从喷嘴410喷射的高速制冷剂流被吸入混合部分420,并且在混合部分420中与从喷嘴410喷射的制冷剂混合。构造喷嘴410,使其具有第一制冷剂通道411,第二制冷剂通道412和第三制冷剂通道413,以此顺序从制冷剂入口向制冷剂出口布置。第一制冷剂通道411,第二制冷剂通道412和第三制冷剂通道413分别形成为具有预定通道直径D1,D2,D3的圆柱形。第一制冷剂通道411的通道直径D1大于第二制冷剂通道412的通道直径D2和第三制冷剂通道413的通道直径。再者,第二制冷剂通道412的通道直径D2小于第三制冷剂通道413的通道直径D3。喷射器400由诸如不锈钢,铜和铝的金属材料制造。在利用这类金属材料模铸成型后,进行诸如钻孔的切削,形成制冷剂通道411-413和混合部分420,以便制造喷射器400。下面将描述喷射器循环系统的操作。当压缩机100开始操作时,从气体-液体分离器500过来的气态制冷剂被吸入压缩机100,并且被压缩的制冷剂从压缩机100被排放到散热器200中。在散热器200中冷却的制冷剂在喷射器400的喷嘴410中被减压,并且在蒸发器300中蒸发的气态制冷剂被吸入喷射器400。即,在第一个实施例中,喷射器400也用作循环气体-液体分离器500和蒸发器300之间的制冷剂的泵。从蒸发器300吸入的制冷剂和从喷嘴410喷射的制冷剂在混合部分420被混合,并且其后流入气体-液体分离器500。在混合部分420中,从喷嘴410喷射的制冷剂喷射流和从蒸发器300吸入的制冷剂吸入流被混合,以便保持从喷嘴410喷射的驱动流制冷剂(喷射流制冷剂)的动力量(kinetic amount)和从蒸发器300的吸入流制冷剂的动力量的和,并且在混合部分420中制冷剂的压力被增加。由此,在混合部分420,制冷剂的动压被转换成其静压,并且在混合部分420制冷剂的压力被增加。因此,混合部分420用作压力增加部分,在该部分被吸入压缩机100的制冷剂的压力被增加。另一方面,由于气态制冷剂从蒸发器300被吸入喷射器400,从气体-液体分离器500过来的液态制冷剂流入蒸发器300,通过从被吹入客室的空气中吸收热量被蒸发。图3是仿真结果,图中示出了从喷嘴410的制冷剂出口到混合部分420的制冷剂出口的制冷剂流速(相对流速),和从喷射器400的制冷剂通道横截面的中心沿径向方向的径向位置之间的关系。假定制冷剂流速分布(气体流速分布)是相对于中心轴线对称的,并且假定在喷嘴410的出口的制冷剂流速是1,进行图3所示的仿真。在图3中,A标示从喷嘴410流出的喷射流气态制冷剂,而C标示从蒸发器300吸入的吸入气态制冷剂(吸本文档来自技高网...

【技术保护点】
一种用于喷射气循环系统的喷射器(400),包括压缩机(100),散热器(200),蒸发器(300)和气体-液体分离器(500),构造所述喷射器循环系统,以便在所述气体-液体分离器中被分离的气态制冷剂被供给到所述压缩机的吸入侧,而在所述气体-液体分离器中被分离的液态制冷剂被供给到所述蒸发器,所述喷射器包括: 喷嘴(410),所述喷嘴用于通过将高压制冷剂的压力能转换成速度能使从所述散热器流出的高压制冷剂减压;及 混合部分(420),在所述蒸发器中蒸发的气态制冷剂通过从所述喷嘴喷射的制冷剂流被吸入所述混合部分中,以便与从所述喷嘴喷射的制冷剂混合,其中: 所述喷嘴具有第一制冷剂通道(411),第二制冷剂通道(412),及第三制冷剂通道(413),以此顺序沿从所述喷嘴的制冷剂入口向制冷剂出口的制冷剂流方向布置; 所述第一制冷剂通道,第二制冷剂通道和第三制冷剂通道分别具有圆柱形,其每一个都具有恒定的通道直径;及 所述第一制冷剂通道(411)的通道直径(D1)大于所述第二制冷剂通道(412)的通道直径(D2)。

【技术特征摘要】
...

【专利技术属性】
技术研发人员:堀田忠资尾崎幸克石川浩武内裕嗣
申请(专利权)人:株式会社电装
类型:发明
国别省市:JP[日本]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1